
Observations of Knowledge Transfer in
Novice Programmers Learning Java as
Their Second Programming Language

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc.

Dept. of Computer Science

Chair of Software Engineering

Submitted by: Yifan Du
Student ID:
Date: 07.02.2024

Supervising tutor: Prof. Dr. Janet Siegmund
Dominik Gorgosch

Acknowledgement

I would like to express my heartfelt gratitude to my supervisors Prof. Dr. Janet
Siegmund and Dominik Gorgosch, and my former supervisor Elisa Hartmann, for
their steadfast support, invaluable guidance and great patience throughout my mas-
ter thesis.
I am also deeply thankful to my friend in the lab, Belinda, for her precious support,
which has significantly improved the quality of my thesis. Special thanks are ex-
tended to Susan Köhler, for providing the helpful facilities during the process of my
thesis.
I would like to thank my family for always giving me huge encouragement and op-
portunities to pursue my dream. Without them, I wouldn’t be where I am today.
Lastly, I would like to acknowledge all the participants of my questionnaire. Their
contributions were vital in the completion of my thesis.
This master thesis would not have been possible without the collective support of
all these individuals. Thank you for being part of this journey.

2

Abstract

Background: Many studies have been done to discover the problems of program-
mers when they learn second and subsequent programming languages. The difficulty
is even greater for novice programmers. There is a process of knowledge transfer
when switching from one programming language to another. Analyzing the thoughts
of novices during code comprehension provides an insight into the knowledge trans-
fer that occurs.
Objective: We wanted to find out what kind of transfers could be observed from
novices in the process of code comprehension in a new programming language. Espe-
cially what kind of transfer could happen intuitively on them. With this information,
we hope to contribute to the development of programming pedagogy to mitigate the
difficulty experienced by novices when going through the learning transfer phase.
Method: A questionnaire containing Java snippets was used to collect responses
from novices. Novices were asked to comprehend the snippets and write the outputs.
The number of novices participating in the questionnaire was 104.
Results: For novices with different programming background: positive transfer
was observed more often when they comprehended snippets containing concepts
that shared similar syntax and the same semantics in Java and their learned pro-
gramming languages. Negative transfer was often observed in comprehension of
snippets containing concepts that had similar syntax but distinct semantics in Java
and the learned programming languages. No transfer happened to novices when
they comprehended snippets containing concepts with different syntax but the same
semantics in Java and the learned programming languages.
Conclusion: Novice programmers have the ability to transfer acquired program-
ming knowledge to similar new scenarios, however, sometimes they still face difficulty
in doing so. Without learning, they can barely predict the meaning of snippets that
include unfamiliar syntax, even though some snippets have the same underlying se-
mantics as the snippets written in their learned programming languages.
Future Work: Interviews or post-questionnaires can be done to have a deeper un-
derstanding of the thoughts of novices during code comprehension. Another code
comprehension questionnaire can also be delivered to these novices after they learn-
ing Java for some time to find out the changes in learning transfer. Additional
instrumentation, such as EEG devices and eye trackers, can also be used to discover
more about the behavior of novices as they read code snippets.

Keywords: programming knowledge transfer, program comprehension,
novice programmers, Java, syntax and semantics

3

Contents

Contents . 4

List of Figures . 7

List of Tables . 8

List of Abbreviations . 9

1 Introduction . 10
1.1 Problem Statement . 10
1.2 Research Goal . 11
1.3 Structure . 11

2 Theoretical Background . 13
2.1 Novice Programmers . 13
2.2 Syntax and Semantics . 14

2.2.1 Syntax in Programming Languages 14
2.2.2 Semantics in Programming Languages 14
2.2.3 Relationship of Syntax and Semantics 15

2.3 Object-Oriented Programming and Procedural Programming 16
2.3.1 Objected-Oriented Programming 16
2.3.2 Difficulty in Teaching OOP 16
2.3.3 Procedural Programming . 17

2.4 Program Comprehension . 17
2.5 Learning Transfer . 18
2.6 Transfer in Programming Languages 19

2.6.1 What Is Programming Language Transfer 19
2.6.2 Difficulty for Novices . 20

2.7 The Model of Programming Language Transfer 20
2.7.1 MPLT Presented in A Figure 20
2.7.2 Three Categories of Concept 21

3 Related Work . 22
3.1 Programming Learning of Novice Programmers 22

3.1.1 Programming Environments and Languages 22
3.1.2 Mistakes Made by Novices . 22
3.1.3 Overall Performance of Novices 24

4

CONTENTS

3.1.4 Confusion of Novices and Other Studies 24
3.2 Learning Transfer Study . 25

3.2.1 Transfer of Learning in CS . 25
3.2.2 Programming Language Transfer of Experienced Programmers 25
3.2.3 Programming Language Transfer of Novices 26

4 Methodology . 29
4.1 Research Objects . 29

4.1.1 Variables . 29
4.1.2 Research Questions . 30
4.1.3 Hypotheses . 30

4.2 Participants . 31
4.3 Materials and Tasks . 31

4.3.1 Experience Questionnaire . 31
4.3.2 Java Questionnaire . 32

4.4 Experimental Design . 38

5 Results . 41
5.1 Data Preprocessing . 41
5.2 Descriptive Analysis . 42

5.2.1 Description of the Subjects . 42
5.2.2 Java Questionnaire Results . 42

5.3 Categorization of Results . 50
5.3.1 Categories of Question 1 - Variable Type 50
5.3.2 Categories of Question 2 - Variable Scope 52
5.3.3 Categories of Question 3 - While Loop 55
5.3.4 Categories of Question 4 - String Comparison 56
5.3.5 Categories of Question 5 - Method Calling 59
5.3.6 Categories of Question 6 - Object Reference Assignment . . . 62
5.3.7 Categories of Question 7 - Memory Allocation 65
5.3.8 Categories of Question 8 - String Concatenation 69
5.3.9 Categories of Question 9 - Array Length 71
5.3.10 Categories of Question 10 - OOP Related 74

5.4 Individual Analysis . 78
5.4.1 Special Case of Three Students 78
5.4.2 Confusion During Interpretation 80

6 Discussion . 81
6.1 Assessment of Results . 81

6.1.1 Transfer Process . 81
6.1.2 Answers to the Research Questions 90
6.1.3 Other Findings . 91

6.2 Threat to Validity . 92
6.2.1 Construct Validity . 92

5

CONTENTS

6.2.2 Internal Validity . 93
6.2.3 External Validity . 94

6.3 Comparison to Related Work . 94

7 Conclusion and Future Work . 96
7.1 Conclusion . 96
7.2 Future Work . 97

Bibliography . 98

6

List of Figures

2.1 Syntax Example of C . 15
2.2 Example of an Inheritance Hierarchy [51] 17
2.3 A Flow Chart Description of Procedural Programming [44] 18
2.4 The Model of Programming Language Transfer [48] 20

3.1 Example of Transfer Tutor [37] . 26

4.1 Screenshot of Question 1 - Variable Type 33
4.2 Snippet of Question 2 - Variable Scope 33
4.3 Snippet of Question 3 - While Loop 34
4.4 Snippet of Question 4 - String Comparison 34
4.5 Snippet of Question 5 - Method Calling 34
4.6 Snippet of Question 6 - Object Reference Assignment 35
4.7 Snippet of Question 7 - Memory Allocation 36
4.8 Snippet of Question 8 - String Concatenation 37
4.9 Snippet of Question 9 - Array Length 38
4.10 A Structure Example in C . 38
4.11 An Example Accessing Length of Structure in C 39
4.13 Process of Experiment for C Background Participants 39
4.12 Snippet of Question 10 - OOP Related 40

5.1 Bar Chart of Answers of Question 1 - Variable Type 44
5.2 Bar Chart of Answers of Question 2 - Variable Scope 44
5.3 Bar Chart of Answers of Question 3 - While Loop 45
5.4 Bar Chart of Answers of Question 4 - String Comparison 45
5.5 Bar Chart of Answers of Question 5 - Method Calling 46
5.6 Bar Chart of Answers of Question 6 - Object Reference Assignment . 46
5.7 Bar Chart of Answers of Question 7 - Memory Allocation 47
5.8 Bar Chart of Answers of Question 8 - String Concatenation 48
5.9 Bar Chart of Answers of Question 9 - Array Length 48
5.10 Bar Chart of Answers of Question 10 - OOP Related 49

7

List of Tables

5.1 Programming Experience Distribution of Participants 42
5.2 Categorization of Results in Question 1 - Variable Type 51
5.3 Categorization of Results in Question 2 - Variable Scope 53
5.4 Categorization of Results in Question 3 - While Loop 55
5.5 Categorization of Results in Question 4 - String Comparison 57
5.6 Categorization of Results in Question 5 - Method Calling 59
5.7 Categorization of Results in Question 6 - Object Reference Assignment 63
5.8 Categorization of Results in Question 7 - Memory Allocation 67
5.9 Categorization of Results in Question 8 - String Concatenation 69
5.10 Categorization of Results in Question 9 - Array Length 72
5.11 Categorization of Results in Question 10 - OOP Related 76

8

List of Abbreviations

PL Programming Language

OOP Object-Oriented Programming

RQ Research Question

TUC Technical University of Chemnitz

EEG Electroencephalogram

MPLT Model of Programming
Language Transfer

TCC True Carryover Construct

FCC False Carryover Construct

ATCC Abstract True Carryover
Construct

CS Computer Science

2D Two-Dimensional

9

1 Introduction

The evolution of computer science is closely related to the development of program-
ming languages. Originating as a discipline rooted in mathematical theory and
machine-specific coding, computer science has evolved into a complicated domain
characterized by a diverse array of programming languages designed to address dif-
ferent computational challenges.
The development of programming languages begins with early machine-specific

languages and assembly languages. The field has witnessed a transformative shift
with the advent of high-level languages catering to distinct programming paradigms
and application domains. Under this circumstances, the demand for programmers
have grown rapidly since two decades ago [32].

1.1 Problem Statement

Due to the increasing popularity of computer science and programming, the number
of people interested in programming has grown swiftly [32]. People always start their
coding journey by learning one programming language (PL). Whereas, when they
are in different situations, they may be required to solve problems using various
PLs. For example, programmers working in distinct fields need to use multiple
PLs to implement software with several functions, use different tools, or program
hardware and software at the same time. Students need to learn PLs because of
taking different courses. As a result, everyone needs to learn another PL, and then
another, and has to experience the process of transferring from one PL to another.
However, it is a hard task to learn second and subsequent programming languages

[35]. A research shows that problems can be met in syntactic, semantic, or plan-
ning level of programming knowledge [35]. Experienced programmers pay a lot of
attention to syntax of the new PL because they know it is important to make the
program compile at least. Programmers’ past syntax knowledge of learned PL can
also lead to wrong assumptions. The new PL may have constructs that have no
similarity to the learned PLs, which does not provide any shortcut for learning it.
Besides, semantic errors are not easy to deal with by reading the error messages
generated at run time. Programmers also face trouble in strategic planning, tactical
planning, and implementation planning phase [35].
The difficulty of learning subsequent PLs is even greater for novice programmers

who are not so familiar with programming languages themselves. There are five
areas of issues when novices learning to program [10]. These are general problem
of orientation, the notional machine, notation, structures, and pragmatics of pro-

10

1 Introduction

gramming. General problem of orientation means the purpose of programs, and
the advantages that one can get after learning programming. The notional machine
is related to understanding the general properties of the machine used to execute
programs. Notation stands for understanding the syntax and underlying semantics
of PLs. Structures have the meaning of acquiring plans to achieve a small scale
goal. Pragmatics of programming represents the skill of specifying, developing, test-
ing, and debugging a program [10]. Among these problems, syntax and semantics
mistakes are commonly seen in novices. A large number of novice programmers
write code that does not compile, and may not be able to solve syntax problems [8].
According to a study, semantic errors occur more frequently than syntax errors [3].
Due to the large difference between programming paradigms, it is problematic for

programmers and novices to transfer from languages supporting one paradigm to
another. For instance, moving from procedural programming languages to objected-
oriented programming languages is difficult [27]. This means transferring from C to
Java can be hard for novices. Since Java is one of the most popular programming
languages [13], and C is still a common choice as the first programming language in
many university computer science and engineering programs, this transfer problem
is common among novices.

1.2 Research Goal

To have a deeper look into this situation, this study about programming knowledge
transfer, program comprehension, Java, C, Python, syntax, and semantics was car-
ried out. During the experiment, a questionnaire containing 10 Java snippets was
distributed to students starting to learn Java in Data Structures course at Technical
University of Chemnitz (TUC), and 104 responses were received.
By conducting this study, how novices programmers naturally link their learned

programming knowledge to a new PL before they start learning it can be observed.
What kind of errors they make can be found. Afterwards, it is helpful for improve-
ment of pedagogy on how to make it easier for students to go through the learning
transfer phase.
Therefore, the research questions are set as follows.

• Research Question 1 (RQ1): What kind of transfer can be observed
in novice programmers during Java code comprehension if they only
have programming knowledge in C?

• Research Question 2 (RQ2): What kind of transfer can be observed
in novice programmers during Java code comprehension if they have
programming knowledge in various programming languages?

1.3 Structure

This thesis is organized as follows.

11

1 Introduction

In chapter 2, theoretical knowledge used in the thesis is described, which includes
the introduction of novices, the description of syntax and semantics, differences in
programming paradigms, program comprehension, learning transfer, programming
language transfer, and a model to describe programming language transfer.
In chapter 3, some related work is outlined in two categories, studies of program-

ming learning of novice programmers, and programming language transfer studies.
In chapter 4, the methods used in this thesis, the design of questionnaire, the

participants, and the process of carrying out the experiment are presented in detail.
In chapter 5, the results of this thesis are shown in charts. These charts present

the correctness of the answers to questions in the questionnaire from participants.
Afterwards, categories of results of each question are elaborated and presented in
tables. In the end, analysis of some special cases is described.
In chapter 6, discussion about the results of the experiment is introduced by

assessing the results of the Java questionnaire, discussing the threats to validity in
three types (construct, internal, and external validity), and comparison to related
work.
In chapter 7, conclusion of this thesis and future work are presented.

12

2 Theoretical Background

In this chapter, theoretical background of this thesis will be introduced, which in-
cludes novice programmers (section 2.1), the definition of syntax and semantics of
programming languages (section 2.2), the difference between object-oriented pro-
gramming (OOP) languages and procedural programming languages (section 2.3),
what program comprehension is (section 2.4), the process of learning transfer (sec-
tion 2.5), transfer in programming languages (section 2.6), and a model to describe
the programming language transfer (section 2.7).

2.1 Novice Programmers

Novice programmers refer to individuals who are beginners to the field of program-
ming. They are typically at the early stages of learning how to write, understand,
and design computer programs. They may have limited experience with coding,
and may be in the process of acquiring foundational knowledge and skills related to
programming languages, algorithms, problem-solving, and software development.
Research focusing on novice programmers has been ongoing for several decades.

Corritore and Wiedenbeck discovered that novice programmers were creating a de-
tailed, step-by-step mental model of programs to enhance their understanding no
matter the program was short or not [6]. Various studies have concluded that
novices possess an insufficient understanding of the area, have only a limited sur-
face knowledge of subject, use generic problem solving approach instead of specific
strategies dependent on the given problem, tend to program using control struc-
tures, and write code using a line-by-line method to solve problems [32, 42, 55].
Lahtinen et al. stated that programming is difficult to novices not only because
of the abstract concepts, but also because they have problem understanding pro-
gram construction [21]. Bonar and Soloway found that novices’ understanding of
programming are influenced by incompatibilities between natural and programming
languages, which may cause trouble for understanding semantics of programming
languages [1]. Robins et al. presented distributions of different PL related problems
novices met in an introductory programming course [31]. According to their data,
trivial mechanics is most frequently seen type of problems, which supports the con-
clusion that novices’ issues with basic design can be more notable than specific PL
construct issues [42, 55].
When educating a novice programmer into an expert, the novice will experience

a continuous process. One of the most famous statements that break this process
into stages is created by Dreyfus and Dreyfus. These stages are Novice, Advanced

13

2 Theoretical Background

beginner, Competent, Proficient, and Expert [9]. Because of the large amount of
problems novices face when learning to program, it is hard to train a novice into an
expert. A widely accepted time frame is about 10 years [55].

2.2 Syntax and Semantics

Syntax and semantics are crucial for effective coding when learning a programming
language, because they form the basis of communication between programmers and
computers. In this section, syntax and semantics of programming languages, and
the relationship between them are introduced.

2.2.1 Syntax in Programming Languages

To a natural language, syntax refers to the set of rules that dictate the proper ar-
rangements of symbols, words, or elements to form grammatically correct sentences.
To a programming language, the definition is similar. Syntax in PLs defines the
formal relations between the element of a language, therefore, it provides a struc-
tural description of the different expressions that form legal strings in the language
[40]. Syntax only handles the form and structure of elements in a language without
considering the meanings of them [40].
Here is an example of syntax of C programming language. See at Figure 2.1.
In this example, "#include <stdio.h>" is used to include the standard in-

put/output library for related functions. "printf" function used in the main func-
tion belongs to this library. "int addNumbers(int a, int b)" defines a function
that returns an integer after execution, and takes two integers a and b as input
parameters. "int main()" defines the main function, which is the entry of the
program. "int num1 = 5" declares a integer variable named num1, and initializes
it with number 5. After this, the function addNumbers is called, and conditional
statements (if) are used.

2.2.2 Semantics in Programming Languages

Semantics discloses the meaning of syntactically correct sentences in a language [40].
For PLs, it presents the behavior of a machine when executing a program in the
language [40]. Natural languages can be used to describe this behavior by pionting
out the relationship between the input and output of a program, or explaining line
by line what the machine does during execution [40].
There are three types of semantics of programming languages [54]. Operational

semantics describes how a PL executes on an abstract machine. It focuses on the
transitions from one program state to another as individual operations or steps are
performed. For example, in operational semantics, how an expression like "x = x

+ 1" leads to changes in the value of the variable x and the program state will
be specified. Denotational semantics used to be called mathematical semantics. It

14

2 Theoretical Background

Figure 2.1: Syntax Example of C

uses abstract mathematical objects or functions to define the meaning of programs.
For instance, in denotational semantics, the meaning of a loop construct will be
defined by showing a mathematical function that represents the behavior of the
loop. Axiomatic semantics attempts to determine the meaning of programming
constructs by giving proof rules in program logic. Among these types of semantics,
operational semantics is mostly used to teach novice programmers.

2.2.3 Relationship of Syntax and Semantics

According to the definition of syntax and semantics of PLs, they are strongly con-
nected. Correct syntax is a necessary condition for meaningful semantics [40]. If
the syntax of a program is incorrect, it may not be executable, and the semantics
of it becomes useless. Syntax provides rules for expressing program structures, and
makes programs clear and readable. On the other hand, semantics defines the actual
meaning and machine behavior translated from these structures. If the semantics of
a program is not clear, the program is definitely incomprehensible even if the syntax
is correct.

15

2 Theoretical Background

2.3 Object-Oriented Programming and Procedural
Programming

Objected-oriented programming (OOP) and procedural programming are two types
of programming paradigms, and represent different approachs to structuring and
organizing code, as well as managing the state and behavior of programs. In this
section, definition and features of these programming paradigms are discussed.

2.3.1 Objected-Oriented Programming

Objected-oriented programming is centered around the concept named ”objects”.
”Objects are collections of operations that share a state” [51], and these operations
are used to manipulate data which is also part of objects [56]. For example, a Bird
object may consist of data such as number of legs, color, gender, living area, and
age. The Bird object may have operations for changing the age value, changing
the living place, adding more data, and deleting some values. Classes are also a
key concept in OOP. They are templates from which objects can be created [51],
and include rules of what objects can and cannot do [56]. An object is called an
instance of a class, and can only be an instance of exactly one class [56]. If there are
two or more distinct entities that share many common features, inheritance is used
to design them [56]. Inheritance makes it possible to reuse the behavior of a class
when defining new classes [51]. The class with all the common features is called
the superclass, and all the calsses that inherit from superclass are called subcalsses
[56]. Subclasses are allowed to add new operations and new instance variables [51].
Below is a figure showing an inheritance hierarchy. See at Figure 2.2. Mammal is the
superclass of Person and Elephant, and has Person and Elephant as its subclasses.
Person has Student and Female as its subclasses. John, Joan, Bill, and so on are
instances.
Encapsulation and polymorphism are also important concepts of OOP. Encapsu-

lation is a technique to minimize interdependencies among modules that are written
separately [41], which makes it easier to modify programs [56]. Polymorphism al-
lows treating objects of different types as objects of a common type. It ”enables
programmers to manipulate subclass objects using superclass references” [18]. Pop-
ular languages that support OOP are Java, Python, C++, C#, and so on.

2.3.2 Difficulty in Teaching OOP

OOP is a good tool for teaching important programming methodologies, however,
teaching OOP is still difficult [19]. According to Gutiérrez et al. [14], some prob-
lems are found related to learning and teaching process of OOP. Novices may have
difficulty in understanding object and its dynamic nature, related to understand-
ing classes, understanding the concept of method, understanding object-oriented
relationships, understanding encapsulation, and understanding polymorphism and

16

2 Theoretical Background

Figure 2.2: Example of an Inheritance Hierarchy [51]

overload.

2.3.3 Procedural Programming

Procedural programming was the de facto approach in the early days of programming
[29]. It emphasizes the use of procedures, routines, or subroutines to structure a
program. Usually, a program is divided into different functions, each implementing
a specific operation. These functions are called procedures or routines. Below is a
visualization of procedural programming example in flow chart (Figure 2.3). In this
flow chart, the starting point is the black filled circle on the top. By following the
direction of arrows, and selecting the result of a conditional statement, operations
are executed. In the end, the machine running this program will find an object,
grasp it with its empty hand, go to home, and hand over the object.
Kölling stated that many textbooks introduce procedural programming as a start-

ing point to object concepts [19]. This means that maybe many people learn a
procedural programming language first, for example, C, Fortran, Pascal, and so on.
They are familiar with creating functions, calling functions, and solving problems
with them. Due to the growing popularity of OOP, these people may need to learn
a OOP language at a certain time. However, transferring from procedural program-
ming to OOP is harder than transferring backwards [19]. They need to pay more
efforts getting used to the features OOP has.

2.4 Program Comprehension

Program comprehension stands for the process of understanding how a software
system or part of it works [24]. It involves mental activities and cognitive processes
of programmers. During software maintenance, programmers spend around half

17

2 Theoretical Background

Figure 2.3: A Flow Chart Description of Procedural Programming [44]

of their time understanding programs [11]. Obviously, comprehension of codes is
unavoidable for people learning programming.
Research about program comprehension has started since four decades ago [2]. In

the past time, there are three common approaches for measuring program compre-
hension: think-aloud protocols, memorization, and comprehension tasks [38]. Some
of these approaches are inappropriate for modern research, but they are the inspira-
tions of methods commonly used today. New emerging methods and techniques are
questionnaires and surveys, eye tracking methods, cognitive load assessments, and
so on. Think-aloud protocols are still used. Through analyzing the participants’
answers to the questionnaire or survey, data collected from eye tracking machines
or EEG devices, the thought processes of participants can be detected. When us-
ing think-aloud protocols, participants will speak their thoughts out, so that these
thoughts can be audio or videotaped. Afterwards, the tapes are transcribed first,
then the transcriptions are representing the thinking process of the participants.

2.5 Learning Transfer

A definition of learning transfer is the ability of a person to expand what has been
learned in one situation to new situations [5]. There are positive transfer and nega-
tive transfer [28].

18

2 Theoretical Background

Positive transfer occurs when the knowledge learned in one case have positive
effects on performance in other cases [28]. For example, if someone learns how
to drive a car, it is easy for him or her to learn driving a bus. If someone is a
native English speaker, he or she may be able to learn French fast. This positive
effect on learning reduces the efforts and time taken by both students and teachers,
increase the performance of learning, and increased confidence for taking challenges.
Therefore, it is significant to leverage positive transfer [28].
Negative transfer appears if the knowledge learned in one context causes negative

influence on performance in other context. For instance, there are also negative
transfer occurring in the example of a person learning to drive a car mentioned
above. Even though driving a car or a bus share similarities, like starting the engine,
controlling the steering wheel, paying attention to rear-view mirrors, there are also
many difference between them. The person gets distinct perspectives sitting in a car
or in a bus. The sizes of a car and a bus are different. These variances influence the
learning of this person, and may cause mistakes. Fortunately, the trouble caused
by negative transfer typically occurs only in the beginning stages of learning [28].
With the growth of experience in the new domain, learners will avoid the influence
of negative transfer [28].

2.6 Transfer in Programming Languages

In the last section, learning transfer was introduced. It also occurs in learning process
of different programming languages. In this section, the transfer in programming
languages is discussed.

2.6.1 What Is Programming Language Transfer

Programming language transfer means the transfer of learning happening in the
context of learning different programming languages. This transfer can happen for
various reasons, for example, learning a new language for a specific project, exploring
new technologies, or seeking for self improvements.
When people learn a PL, they start with learning fundamental concepts of a PL,

such as variables, data types, control structures (if statements, loops), and func-
tions. By learning these, they know the syntax, semantics and structure of simple
programs. Afterwards, they need to practice what they have learned repeatedly
through writing code and solving problems in the new PL, and gradually move onto
more complex projects. In this learning process, both positive and negative trans-
fers are observed in novice programmers and experienced programmers [35, 57]. For
experienced programmers, positive transfer occurred when the new PL has simi-
lar elements as the former PL. Negative transfer took place when the new PL has
distinct constructs from the former PL.

19

2 Theoretical Background

2.6.2 Difficulty for Novices

Novice programmers have not reached a certain level of proficiency in PL itself,
so their problem-solving abilities are relatively low. Their lack of programming
knowledge is likely to affect their judgment on similar or different problems.
Positive transfer may not occur as expected on novices. In research of Teague

and Lister, novices were commonly seen not be able to transfer the concepts taught
on a prior problem to the next programming problem [45]. In the study of Izu and
Mirolo, around half of the novices tried to reuse their knowledge in the exam, but
only about half of these novices were successful [15]. Based on these facts, negative
transfer may cause them insurmountable trouble.

2.7 The Model of Programming Language Transfer

To describe the transfer of learning programming language of novices, a model was
proposed by Tshukudu and Cutts [48]. In this section, the model of programming
language transfer (MPLT) is introduced.

2.7.1 MPLT Presented in A Figure

The model of programming language transfer can be presented in a figure (See at
Figure 2.4). According to Tshukudu and Cutts [48], as shown in the figure, the

Figure 2.4: The Model of Programming Language Transfer [48]

knowledge of programmers is represented as a network of nodes. These nodes are
connected at different levels: conceptual level, semantic level, and syntax level. The
conceptual level contains the underlying concepts of PLs. The semantic level is
related with the semantics of programs. The syntax level stands for the syntax of a

20

2 Theoretical Background

PL. A route starting from the conceptual level to the syntax level stands for a concept
in a PL, the semantics of this concept, and the syntax of this concept. Therefore,
for one concept, there could be different sub-concepts. For each sub-concept, there
is one semantics related to it. For one semantics, there could be different syntax to
implement this semantics. Whereas, before the novice programmer learn other PLs,
there is only one syntax connected with one semantics. When the novice programmer
starts to learn his or her first PL, the nodes at conceptual level are created, and
the links between nodes are formed. For example, the nodes (a) and (b) could be
the knowledge of two types of repetition concept: iteration and recursion. Node
(c) could be the concept of function return. Afterwards, when the novice learns the
second PL, more nodes and connections are appearing. New concepts will add nodes
to the conceptual level, and other knowledge also adds nodes or connections to the
route. On the right hand of the figure, the relationships that nodes (d), (e), and
(f) presented stand for true carryover construct (TCC), false carryover construct
(FCC), and abstract true carryover construct (ATCC), respectively.

2.7.2 Three Categories of Concept

As mentioned above, the nodes (d), (e), and (f) represent three types of ideal re-
lationships between different concepts in these two PL. TCC, FCC, and ATCC are
three concept categories that show this concept relationship.
TCC is a construct that has similar syntax and the same underlying semantics

in both PLs. For example, declaration of an integer is contained in both C and
Java, which means the same semantics. The expression, int number = 2;, is also
syntactically correct in both C and Java. FCC is a construct that has similar syntax
but distinct semantics in the two PLs. For instance, the handling of pointers and
references in C and Java. The syntax for declaring and initializing a pointer or a
reference is similar in both languages, however, there is no no pointer in Java as in
C. ATCC is a construct with different syntax but the same semantics in the two
PLs. The example for this construct is defined structures in and objects in Java.
In C, there is no concept of objects, nevertheless, defined structures can be used
to present simple objects. Other examples for this construct are those with hidden
implementation details, such as data abstraction in Java, which ”at a low level are
data structures like Python dictionaries” [48].

21

3 Related Work

In this chapter, some related work is presented. They are categorized into two main
parts: research about novices learning to program (section 3.1), and learning transfer
studies (section 3.2). In the first part, programming environments and PLs invented
for novices, mistakes, performance, and confusion of novices are mentioned. In the
second part, transfer studies are presented in general related to CS first. Then, the
programming learning transfer is explored considering experienced programmers and
novices.

3.1 Programming Learning of Novice Programmers

Prior to looking at the programming learning procedure of novice programmers, it
is necessary to first have an idea on the programming environments and PLs that
novices may use.

3.1.1 Programming Environments and Languages

Kelleher and Pausch created a taxonomy of programming environments and lan-
guages [17]. Researchers have been putting in efforts in building different PLs and
environments to make programming easier for more people [17]. The taxonomy
of Kelleher and Pausch [17] divides systems first into two large groups: systems
attempting to teach programming, and systems attempting to support the use of
programming in other contexts. Example systems in the first group are: BASIC,
LogoBlocks, Magic Forest, Pascal, Cleogo, and Robocode. Systems belong to the
second groups are: Pygmalion, AgentSheets, COBOL, AutoHAN, Hypercard, and
so on. These systems tried to make programming accessible by simplifying the mech-
anism of programming, providing support for novice programmers, and giving them
motivation of learning to program [17].

3.1.2 Mistakes Made by Novices

With the help of these systems and special design PLs, the programming learning
should be easier for novices. Whereas, there are still a lot mistakes faced by novice
programmers during their learning. The mistakes are introduced in this section in
two different ways.

22

3 Related Work

3.1.2.1 General Programming Mistakes

Many mistakes of novices were found by Brown and Altadmri through analyzing the
Blackbox data set of over 100,000 students [3]. They categorized the mistakes into
three main categories: misunderstanding (or forgetting) syntax, type errors, and
other semantic errors. The frequency of mistakes of their study showed that among
the 10 most frequently detected mistakes, 5 kinds of mistakes are semantic errors,
4 types of mistakes are syntax errors, and only 1 mistake belongs to the type errors
[3].
McCall and Kölling also did research on novice programmers’ errors [25, 26],

and an error category hierarchy was developed. In their first study, the amount of
error categories identified was 80, which can be divided into three main categories:
syntactic, semantic, and logic errors [25]. They also performed an analysis about
frequency of error categories, and the most frequently found error is ”Variable not
declared”. McCall and Kölling did another study on error categorization in 2019
[26]. They updated a way of defining the severity of a type of error (severity =

frequency × difficulty) to using error frequency and time-to-fix statistics. As
a result, 90 error categories were identified. In general, the three broad categories
are: syntactical, semantic, and logical. They continued to make a finer-grained
selection of top-level categories, and 11 categories were chosen. Some examples of
their final top-level categories of mistakes are: ”Variable: Incorrect attempt to use
variable”, ”Variable: Incorrect variable declaration”, ”Method: Incorrect method
call”, ”Method: Incorrect method declaration”, and so on [26].

3.1.2.2 Java Programming Mistakes

Brown and Altadmri [4] analyzed the Blackbox dataset again in their later research,
and fond that the most frequently appearing mistake of novices learning Java was
related to brackets. Novices would write unbalanced parentheses, curly brackets,
square brackets, and quotation marks, and so on. The second frequently met mis-
takes in Java was about methods. Novices tended to call methods with wrong
arguments. For instance, they might write wrong types of arguments. The type of
mistakes with the third highest frequency was connected with control flow. Novices
could write control flows that would reach an end of a method without encounter-
ing a return statement, but the method should return a value. Among the top 10
constantly found mistakes in Java, 50% of them were semantics problems [4]. Two
of the semantics mistakes both took the longest time for novices to solve. Brown
and Altadmri [4] also found that the estimation of educators about the program-
ming mistakes that students were likely to make was not consistent with the data
of students.
Jackson et al. [16] stated that the top ten Java errors were: ”cannot resolve

symbol”, ”; expected”, ”illegal start of expression”, ”class or interface expected”,
”¡identifier¿ expected”, and ”) expected”. Their results supported the findings of
Brown and Altadmri [4] that mistakes related to brackets were commonly seen.

23

3 Related Work

According to the research of Rodrigo et al. [33], a large amount of students had
difficulty understanding event-driven programming in Java. For example, they had
a hard time understanding threads, exception, event handling, and so on. The
concepts in Java related to OOP were also difficult for students to comprehend.
The instances were polymorphism, inheritance, and encapsulation. Some students
met trouble when learning general data structures, such as declaring and work with
multidimensional arrays.
These findings of mistakes all present the difficulty novices met during learning

Java programming. However, Java is one of the most prevalent PLs [13], which
means a lot of novices will choose to learn Java. Study about novices learning is
still important for making it easier for novices.

3.1.3 Overall Performance of Novices

Besides the research about programming errors of novices, a study about the overall
performance of novices had been done by Lopez et al. [23]. They analyzed the
responses of students during an examination, after these students completed one
semester of learning to program. The questions used in their exam were categorized
into different groups: Basics, Sequence, Non-iterative tracing, Iteration tracing, Ex-
ceptions, Data, Writing, Explain, and General questions. By analyzing the data
using stepwise regression, they found that code tracing and code writing skills of
novices are strongly related, and code reading and code writing skills are also asso-
ciated [23].
Venables et al. [50] did similar research to Lopez et al. [23]. Their findings

supported the earlier findings of Lopez et al., which means there is ”statistically
significant relationships between tracing code, explaining code, and writing code”.
However, the results of Venables et al. uncovered that the relationship between
tracing, explaining, and writing code differ significantly according to the difference
of tasks. They also made improvements to the conduction process of the experiment
by not using a Rasch model.

3.1.4 Confusion of Novices and Other Studies

The confusion of novice programmers has also been researched by Lee et al. [22].
Through analyzing the grades of students’ midterm examination, they studied the
relationship between novices’ confusion and achievement when learning Java. During
their experiment, compilation logs of students in four practical lab exercises were
collected. Afterwards, part of the data was labeled manually as Confused, Not
Confused, or Bad Clip. A model was built using this labeled data to label the rest
of the data automatically. As a result, Lee et al. found that prolonged confusion
has a negative influence on students’ achievement. However, resolved confusion has
a positive effect on students’ achievement.
There are other researchers who have tried to find the most problematic concepts

for novices [36]. The relationship between boredom and learning achievements has

24

3 Related Work

been done [7, 34].

3.2 Learning Transfer Study

Learning transfer has been a popular research topic for years. Various studies have
been carried out discovering details of the knowledge transfer procedure. In this
section, transfer of learning in computer science (CS) and PL transfer of novices are
the main focus of discussion.

3.2.1 Transfer of Learning in CS

Garcia-Martinez and Zingaro did research on why CS students often fail to trans-
fer learning between context [12]. The most frequent teaching styles in CS can be
divided into five categories: ”teacher as the isolated authority delivering a subject,
teacher as the authority delivering a course, teacher as a member of a learning com-
munity, teacher as the facilitator of students’ learning, and teacher as a facilitator
of a learner centered environment” [49]. Garcia-Martinez and Zingaro found that
learning transfer exists in all these categories, and these teaching styles can all be
improved if learning transfer is paid special attention to [12].
Izu and Mirolo explored the learning transfer of novice programmers by analyzing

the results of two related coding tasks in C PL [15]. Among their participants, 255
CS1 students, 36.5% transferred their knowledge from practices to the task solving
successfully, while 56% tried to make the transition. 13% of students partially did
the transfer, and 6% of them failed to transfer. 38% of students failed to reuse the
valid strategy in task one or implement a better strategy, and were unsuccessful
answering task two. What’s more, 9% of students thought of a different strategy,
which indicated that there were additional learning happening in between the two
tasks. During analyzing the data, Izu and Mirolo identified four types of transfer
(Extended transfer, Consolidation, Partial transfer, and Failed transfer) and two
types of non-transfer (No transfer, and New insight) [15]. They also found that by
carrying out peer review of important coding tasks, weaker students were able to
read distinct design strategies and were easier to make the transfer.

3.2.2 Programming Language Transfer of Experienced
Programmers

Experienced programmers have more knowledge and experience in programming,
know more PLs, and are more familiar with concepts in PLs than novices. They are
believed to learn new PLs much faster than novices. Nevertheless, the PL transfer
procedure can still be hard because of large amount of differences between PLs [37].
The problems or misunderstandings of experienced programmers are also likely to
be difficult to answer or explain. Whereas, due to the negative influence of transfer

25

3 Related Work

decreases as the experience of learners grows [28], not so many studies were done
recently about experienced programmers.
Transfer Tutor [37] is a research tool created by Shrestha that teaches program-

mers R using Python and the data analysis library named Pandas. It is used by
Shrestha in investigating PL teaching considering learning transfer. The figure be-
low (Figure 3.1) presents details of Transfer Tutor. Two lines of code are shown at

Figure 3.1: Example of Transfer Tutor [37]

the same time with Python code on the top of R code. The red arrow (1) points at
the currently highlighted syntax element of both lines, which are (2a) and (2b) in
this case. Steps at the bottom are buttons to control the tutorial. ”Next element”
will highlight the next syntax element, and ”Previous element” does similar things
but for the previous direction. ”Reset” and ”Done” mean resetting and finishing the
tutorial respectively. Through Transfer Tutor, similarities between syntax elements
are highlighted, and potential misconceptions are explained. The results of Shrestha
showed that experienced programmers used PL transfer even without guidance, and
the knowledge they already had usually contributed to their learning [37].

3.2.3 Programming Language Transfer of Novices

Because of trouble caused by negative transfer typically occurs only in the beginning
stages of learning [28], PL transfer has a bigger impact on novices. In recent years,
many studies has been done in this area.
Block-based programming is a programming paradigm that utilizes visual ele-

ments, often represented as blocks, to create code. Users connect these blocks to
program instead of typing out lines of text-based code. This paradigm is partic-
ularly popular in teaching coding to beginners. However, learning to program in
text-based code is still significant for novice programmers. Transfer from block-based
programming to text-based programming can be difficult to novices. The most basic

26

3 Related Work

problems faced by them during this transfer are: ”readability, memorisation of com-
mands, memorisation of syntax, typing or spelling, number of commands, prototype
versus definition, matching identifiers, grouping, writing expressions, understanding
types, interpreting error messages, managing layout, and changing programming
paradigm [20]. To solve the aforementioned problems, frame-based editing was pro-
posed by Kölling et al. [20]. It combines many helpful features of block-based and
text-based systems into one interface. The aim of it is to save the small-scale read-
ability, discoverability, and some of the error avoidance of blocks, at the same time,
keeping the large-scale readability, flexibility, operation efficiency, and keyboard con-
trol of texts [20]. By using frame-based editing as an intermediate step, the most
fundamental problems are overcame [20].
There are other studies exploring the transfer process from block-based to text-

based programming. Weintrop et al. investigated the situation when students di-
vided into three groups were using a block-based, a text-based, or a hybrid blocks/text
programming environment [52]. After the introductory course using the environ-
ments mentioned above for five weeks, the performance of students in traditional
Java course was examined. They found that students using text-based program-
ming environment for introductory course often had the lowest average number of
successful compilations. Students in the hybrid blocks/text environment had the
highest number of successful compilations. Besides, students in blocks environment
had least errors in half of the ten most frequently seen errors because they paid
more attention to the differences between syntax of Java programs and block-based
programs. This was caused by students finding huge difference between the two
programming environments. Weintrop and Wilensky developed commutative as-
sessments to understand how block-based differ from text-based programming in
regarding to conceptual understanding [53]. Powers et al. explored a block-based
programming system, Alice, and found that the object model in it leads to misun-
derstanding easily [30]. Even though students didn’t make much syntax errors when
programming in Alice, however, it can have negative influence when they transfer
to Java [30].
Since syntax is still a significant problem to novice programmers when learning

programming, an empirical study was done by Stefik and Siebert about syntax of
PLs [43]. Two surveys were conducted to discover what words and symbols could
be easy for novices to understand. Afterwards, two other studies on six PLs (Java,
Perl, Ruby, Python, Randomo, and Quorum) were done to analyze the accuracy
rates of novices. As a result, they found that PLs (Java and Perl) share more
syntactic constructs as C caused more trouble for novices. These languages did not
improve the performance of students comparing to other PLs, while a language with
randomly generated keywords, such as Python, Ruby, and Quorum, contributed to
higher accuracy rates to novices [43].
Tshukudu and Cutts did research on four novices and one experts from five uni-

versities transferring from procedural Python to object-oriented Java in ten weeks
[47]. Participants were interviewed individually during the experiment. According
to their paper, session 1 was carried out before participants learning Java, session 2

27

3 Related Work

took place in the second week of learning Java, and session 4 was in the sixth week
of Java. Tshukudu and Cutts found that participants faced little difficulty with
carryover concepts that provide participants with positive effect on the semantic
transfer. For example, variables, conditional-statements, methods, and parameter
passing are all carryover concepts. Participants understood these concepts correctly
in Java. However, they had trouble mapping changed concepts, which occurred when
syntax were matching but corresponding semantic were distinct. For those concepts
that do not exist in Python, participants could not transfer their knowledge. Their
findings reflected that novices ”relied mostly on their syntactic matching between
Python and Java and subsequent semantic transfer” [47].

28

4 Methodology

In this thesis, a qualitative study was done to explore the learning transfer of novice
programmers when they transfer from C and other PLs to Java. The experiment
took place at the very first data structure class of the semester before novices starting
to learn Java. The questionnaire used only contained Java comprehension tasks to
observe the intuitive behavior of participants when they facing a completely new PL.
In this chapter, details about the methodologies used in the thesis are described,
which include research objects (section 4.1), participants (section 4.2), materials
used in the experiment (section 4.3), and experiment process (section 4.4).

4.1 Research Objects

Before reaching to contents directly related to the experiment, variables of RQ, RQs,
and hypotheses of the thesis are introduced.

4.1.1 Variables

Variables are key elements in formulating research questions and hypotheses, de-
signing experiments, and analyzing data. Independent variables and dependent
variables are two types of important variables in empirical studies. Independent
variables are those controlled by researchers, while dependent variables are mea-
sured by researchers. Dependent variables are the outcomes or responses that are
influenced by the independent variables.
The independent variable of this thesis is the knowledge background of novices.

There are mainly two categories of background: having only knowledge in C, and
having knowledge in other PLs. The first category means that novices only have
programming knowledge in C. The second category stands for having programming
knowledge in various PLs. The reason why this category was not specified clearly is
that the detailed information of participants remained unknown when designing the
research questions. Participants are novices, but they could have learned Python,
C, Java, or the combination of these languages. When carrying out the study, the
experience of participants would be collected through a questionnaire about self-
assessed experience created by a supervisor.
The dependent variable is the transfer observed during Java code comprehension.

Different types of transfer were expected to be observed, which can be divided into
mainly three categories. The ideas of these categories were derived from the work
of Tshukudu and Cutts [48], and also were effected by the research of Perkins et al.

29

4 Methodology

[28]. For questions contain concepts in TCC, FCC, ATCC category, positive transfer,
negative transfer, no transfer were expected respectively. During the experiment, a
Java questionnaire was handed to participants. All the questions in the questionnaire
asked participants to write the results of the given code snippets or write the possible
error of the snippets if they believed it was not correct. Afterwards, the results were
collected, and the transfer was observed through analyzing the results.

4.1.2 Research Questions

To investigate what transfer would be observed in novices of different programming
backgrounds, the research questions were designed as follows. The first RQ is

• RQ1: ”What kind of transfer can be observed in novice program-
mers during Java code comprehension if they only have program-
ming knowledge in C?”

Described in this RQ, the aim of the thesis was to find out phenomena of transfers
of novice programmers who only have experience learning C when comprehending
Java code snippets. The second RQ is

• RQ2: ”What kind of transfer can be observed in novice program-
mers during Java code comprehension if they have programming
knowledge in various programming languages?”

The other research goal of the thesis is to find what kind of transfer would be
experienced by novices with other programming backgrounds.

4.1.3 Hypotheses

Hypotheses are predictions about the outcomes of a research study. They are the
basis of empirical studies and guide the research procedure by providing a clear and
testable framework for investing relationships, or effects. The hypotheses of this
thesis are listed here.
Considering both RQs, there are three hypotheses related to the three categories

of concepts [48].

• H1: For novice programmers having different programming knowl-
edge, positive transfer is expected to be observed when they com-
prehend Java code snippets containing TCC of their learned PL.

• H2: For novice programmers having different programming knowl-
edge, negative transfer is expected to be observed when they com-
prehend Java code snippets containing FCC of their learned PL.

• H3: For novice programmers having different programming knowl-
edge, no transfer is expected to be observed when they comprehend
Java code snippets containing ATCC of their learned PL.

30

4 Methodology

Because moving from procedural programming to object-oriented programming can
be difficult [27], a hypothesis was obtained related only to the first RQ (RQ1).

• H4: For novice programmers who have only programming knowl-
edge in C, the most frequently observed transfer is negative transfer
due to the differences in program paradigms and syntax.

Students in a programming class often may have very different experience levels [21].
This may lead to different performances during language transferring.

• H5: Novice programmers who exposed to more PLs are more likely
to transfer their previous knowledge successfully to new enarios.

4.2 Participants

The participants of this thesis were 104 university students in TUC that took the
course Data Structures in summer semester 2023. Most of the students only have
learned C in their first semester, while some students have learned Python before.
They were taking the Data Structures course to learn coding in Java and data
structures of Java. All of the students are novice programmers who are new to
programming. The details of the programming experience of them were examined
through self-assessment questionnaire on programming proficiency.

4.3 Materials and Tasks

In this section, two questionnaire used in the experiment are introduced, which
include contents of the experience questionnaire and details of the design of Java
code comprehension questions.

4.3.1 Experience Questionnaire

The experience questionnaire used in this thesis was created by a supervisor in
professorship of software engineering in TUC. The questionnaire used self estimation
to measure programming experience, which was proved to be a reliable way by
Siegmund et al. [39].
In the questionnaire, a UID was first generated by a set of questions: last digit of

student number, first letter of first name, first letter of last name, last two letters
of place of birth, first digit of date of birth, last digit of date of birth, and last
digit of height. This UID was unique to each participant, and was used in both
questionnaires to protect the safety and privacy of user data, and the user data was
anonymous to researchers. After generating the UID, it was sent to participants via
emails. Following UID related questions, there were a section of questions about
personal information, such as the age, the gender, and the degree of participants.
Then a group of programming experience questions were presented.

31

4 Methodology

The parts in this experience questionnaire related to the thesis are UID questions,
and three questions about the experience in C, Java, and Python. For example, the
question of Java experience was ”How experienced are you in using the following pro-
gramming languages? [Java]” There were five options that participants could choose
from: very inexperienced, inexperienced, medium, experienced, very experienced.

4.3.2 Java Questionnaire

To explore the intuitive transfer phenomena happening in novices when they com-
prehend Java code snippets without starting to learn it, a questionnaire containing
basic Java concepts was created. Some questions used in the thesis were adapted
from research of Tshukudu [46].
At the beginning of the questionnaire, an introduction to the experiment was

included. The introduction briefly listed the goal and contents of the study, and
what participants needed to do during the experiment. Participants were told that
they did not need to have knowledge about programming in Java, and the goal was
to understand their initial expectations about how the provided Java snippets work.
They were asked to try as much as they could to link their previous knowledge of
C to comprehending Java code snippets.
There were 11 questions in the questionnaire. The first question asked students to

fill in the UID generated in the experience questionnaire, and the next ten of them
were Java comprehension questions. For each question, participants were required to
read the given code snippets carefully and gave the first guess of what the code did.
They were also informed that there would be errors in the snippets. If a participant
could not make a guess, he or she was allowed to write simply ”I do not know.” to
skip the question.
The ten code comprehension questions contain basic Java concepts, such as dec-

laration of variables, declaration of objects, usage of methods. Below is the figure
(see at Figure 4.1) of the first question. In this snippet, an integer variable named
”a” was first declared. Then, it was assigned twice with value 1 and 10.5. The last
line printed the value of the variable “a”. The result of this question should be error
when compiling, because a float number was assigned to an integer. Comparing to
C, it contains concepts in the category FCC, since it would only result in a warning
when compiling and output 10 in C. Comparing to Python, the snippets contains
concepts in FCC. Students in C and Python background were expected to have
wrong answer.
The second question (see at Figure 4.2) was about for-loop in Java. The variable

”var” in question 2 was defined and initialised inside the loop. The last line temped
to print the value of ”var” outside the loop, therefore, the actual result of this snippet
is error when compiling. In C, the for-loop and the scope of variables concepts have
the same syntax and semantics as in Java, so the question contains TCC. In Python,
the last line is able to print the value of ”var” again as ”Hello”, thus the question
contains FCC. Students have knowledge in C would point out the compiling error,
but students have Python background would say that there was no error and three

32

4 Methodology

Figure 4.1: Screenshot of Question 1 - Variable Type

Figure 4.2: Snippet of Question 2 - Variable Scope

”Hello” would be outputted.
The third question presented a simple while-loop (see at Figure 4.3). In this

snippet, the value of variable ”i” was printed in each iteration. The correct answer
of the output is ”0 1”. In both C and Python, the concept of while-loop has similar
syntax and shares the same semantics, for that reason, this question contains TCC
comparing to both PLs. The expected results from participants are also ”0 1”.
In the forth question, the concepts of object and ”==” were covered (see at Figure

4.4). In the first line, a String type object was created and was assigned with value
”lab”. In the second line, another String type object was defined and has the same
value as the first object. In the next line, the two objects were compared using
”==”, and the result was printed out. In this example the == operator compared
object references, not the content of the strings. Therefore, the result was supposed
to be ”false”. If strcmp() function in C is used to compare two strings, ”0” will
be the output when two strings share the same content. ”True” is also commonly
used even though C does not support boolean data type directly. For that reason,
students with C experience would say that the output of this program is ”0” or
”True”. In this case, the question is assumed to have concepts in FCC category. In

33

4 Methodology

Figure 4.3: Snippet of Question 3 - While Loop

Figure 4.4: Snippet of Question 4 - String Comparison

the situation of Python, if two string variables, a and b, are declared and assigned
by the same string, the output of print(a == b) is ”True”. Thus, the question also
contain concepts in FCC. For students with Python knowledge, they would answer
”True” to this question.
Concept of methods is included in the fifth question (see at Figure 4.5). This

Figure 4.5: Snippet of Question 5 - Method Calling

was a program that includes two methods named ”gen” and ”main”. Students
with programming experience in C and Python might get confused at first because
of keywords such as ”public, class, static”, etc. Whereas, if they read the code
ignoring the parts they were not familiar with, students would find that there was
a ”function” defined first named ”gen”. In the ”main function”, ”gen” was called,
and two parameters were passed to ”gen”. The result of this snippet was 14. The

34

4 Methodology

concept of methods has similar syntax as functions in C and Python, and has the
same semantics in these PLs. Thus, in this question, the concepts contained belong
to category TCC. The answers from all the students were expected to be 14 which
was correct.
The sixth question presented concepts of classes, methods, and objects (see at

Figure 4.6). This Java snippet defined a Robot class with a constructor and a

Figure 4.6: Snippet of Question 6 - Object Reference Assignment

method named ”agga”. In the main method, two instances of the Robot class, n1
and n2, were created, and their properties were manipulated. The line ”n2 = n1”
made n2 point directly to the same location as n1. Afterwards, when n1 was changed
later, the value of n2 was changed as well. So the correct output of this snippet is
”51 53 53”. However, to students only with knowledge in C, they believed that ”n2
= n1” only copied the value of n1 to n2. Variables n1 and n2 were still stored in
different locations in memory. In this case, when the value of n1 was changed by
calling the ”agga function”, the value stored in n2 would not be affected. The answer
from these students would be ”51 53 51”. Comparing to C, this question contains
concepts in FCC category. To students with Python experience, the behavior is

35

4 Methodology

similar to Java in terms of object references. The n1 and n2 variables reference the
same object after the assignment n2 = n1. When modifying the object through
n1, the changes are reflected when accessing the object through n2. Therefore, the
concepts in this question are in TCC category, and these students were expected to
answer it successfully.
The seventh question was about memory allocation mainly (see at Figure 4.7).

The first line of method twoSum contained a property of arrays and strings that

Figure 4.7: Snippet of Question 7 - Memory Allocation

returns the length of the array or the string in Java called ”.length”. There is
similar usage in C that accesses a length property, but it can only be used when there
is a structure that contains a member named ”length”. Hence, the first problem
students with C programming experience met was the understanding of ”.length”.
In the following part of the questionnaire, there was another question focusing on the
usage of ”.length”. In method ”twoSum” of this program, a new array is return in
the end. In Java, keyword ”new” is used to allocate memory for this array. Whereas,
in C the allocation of memory needed to be managed manually by using functions
like ”malloc”. Students have background in C would assume that there was no

36

4 Methodology

memory allocated to the returned array and led to a segmentation fault. However,
the actual result is ”4 5” that stands for the index of ”5 and 6”. Students who did
not know that Java manages memory through automatic garbage collection would
answer it unsuccessfully. In this case, no knowledge transfer was expected, and the
concepts belong to ATCC category. In python, automatic memory management
is also used, meaning that it is not necessary to explicitly allocate and deallocate
memory. However, there is no key words in Python similar to ”new” in Java. In
this case, no knowledge transfer was expected again, and the concepts also belong
to ATCC category.
The eighth question was about the print line function in Java (see at Figure

4.8). ”+” is allowed in Java to connect two strings, therefore, the outputs would be

Figure 4.8: Snippet of Question 8 - String Concatenation

”hellothere” and ”exec3”. In C, one possible way to connect two strings is to use
”strcat()” function. Students with prior knowledge in C were expected to answer
that this program would meet compiling error because ”+” is not supported when
connecting two strings. This concept belongs to the category FCC. In Python,
connecting two string using ”+” is allowed. Nevertheless, there would be a compiler
error for running "print("exec"+3)". Considering this scenario, this concept is
also in the FCC category.
The ninth question was the one mentioned earlier about the usage of ”.length”

(see at Figure 4.9). The correct output of this program was a 3x3 array. As men-
tioned before, the only way that ”.length” works is to have a structure that contains
a member named ”length” in C. For instance, there is a structure as follows (see at
Figure 4.10) in C. The value of length can be accessed using ”.” operator or "->" op-
erator. In the above example (see at Figure 4.11), we use ”.length” and "->length"

to access the length member of the structure. Looking back to the snippet of the
ninth question, if students with C experience thought that ”.length” only works for
structures, they would answer that this program would meet a compiling error. So
the concepts of this question can be classified in the FCC type, and students got
wrong answers. The len() function is used in Python to get the length of a sequence,
such as a list. Therefore, for students having Python experience, this concept is new.
The last question was about the class and method concepts in Java (see at Figure

4.12). This snippets presented a simple example of class and method in Java, but
there is no such concept in C. Firstly, an object named student1 was created and
initialized. Then, value of some attributes accessed through using methods was
printed. The age attibute of the object was changed by setAge method. In the end,
the changed age attribute was printed. So the correct answer was ”001, Max, 25

37

4 Methodology

Figure 4.9: Snippet of Question 9 - Array Length

Figure 4.10: A Structure Example in C

23”. For students with experience in C, they had no idea what classes and methods
were. As a result, they might have answered it unsuccessfully, such as ”I do not
know.”, ”Compiling error”, and so on. However, they might also have correct answer,
because the names of methods and variables made it easier to guess the function
of them. The concepts in this question were classified in ATCC category, and no
transfer would be observed. In Python, there are concepts related to OOP, therefore,
the syntax would look similar in python. The concepts were in TCC category, and
students with Python knowledge were expected to answer it successfully.

4.4 Experimental Design

The experiment of this thesis was carried out in the first lecture of Data Structures
held in summer semester 2023. Experience questionnaires and Java questionnaire
offered participants both paper form and online form. For online questionnaire,

38

4 Methodology

Figure 4.11: An Example Accessing Length of Structure in C

participants used LimeSurvey, an open-source online survey tool, to enter their re-
sponses to the questions. For the Java questionnaire, participants were allowed to
enter anything with no word limitation as their answer so that they could express
their thoughts thoroughly. The process of the experiment can be shown in a figure
(see at Figure 4.13). This figure shows an example of the experiment process to
participants who have C programming knowledge.

Figure 4.13: Process of Experiment for C Background Participants

During the experiment, the experience questionnaire and the Java questionnaire
were distributed to students, and they were asked to fill in the questionnaire with
no time limitation. Participants may open the questionnaire using their laptops,
or read the questionnaire in paper form. Afterwards, participants were using their
previous knowledge of programming and PLs to answer the Java questionnaire.
Their answers were collected through LimeSurvey, and an excel sheet presenting the
data was downloaded. This answer sheet is important for analysis of the thesis.
The analysis of the correctness of the answers would be done firstly followed by
categorization of mistakes made by students in the Java questionnaire. In the end,
some individual analysis of special cases found among the answers would be done.
The unique UID generated from the experience questionnaire were used again in
Java questionnaire. This UID was later mapped to the emails of participants for

39

4 Methodology

Figure 4.12: Snippet of Question 10 - OOP Related

prospective contacting purposes. The usage of UID makes it possible to collect and
analyze data while maintaining the anonymity of participants, to track individual
performances, to make cross-referencing with other data of future work.

40

5 Results

In this chapter, the results of the experiment are presented. The data preprocessing
is introduced in section 5.1. In section 5.2, the results of the experiment are shown
in charts. Section 5.3 is mainly about the categorization of mistakes that students
made in the questionnaire, and the hypotheses are tested here.

5.1 Data Preprocessing

After participants finishing the questionnaires, the online questionnaire was collected
automatically by LimeSurvey, and the paper questionnaires were collected manually.
In the end, 97 online responses were collected in total, and 7 answers in paper were
collected, which means a total of 104 responses were collected.
However, among these responses, not all of them can be used for analysis. There

are some cases that make the response not available for leveraging. The first one
is empty response. There are some responses that were collected online, with no
answer at all from the very first question to the last question. These responses were
considered invalid. The number of responses in this kind is 9. There is another
response also be treated as invalid ones. In this response, only the first question
asking to fill in the UID was answered, but the answer was 1 which made no sense.
Therefore, 10 responses were regarded as invalid response, and were removed from
the valid responses sheet. The second case is about duplicated answers. There were
some participants who filled in more than one questionnaire. This case was found
by the repetition of UID. The goal of this experiment is to find the intuitive transfer
of PL knowledge when participants comprehend a new PL, nevertheless, responses
from one participant should be single. For this reason, repeated responses from one
participants were considered invalid as well. In this analysis, the last response from
the participants were kept, and other duplicated responses were removed. In the
answer sheet, 2 responses were duplicated. As a result, 92 valid responses were used
to do further analysis.
The responses of the self-assessed experience questionnaire were mapped to the

responses of the Java questionnaire by the unique UID. However, not all answers to
the questions were used in analyzing Java questionnaire, and the used ones were an-
swers to the three questions about programming experience in Java, C, and Python.
The answers of the three questions were mapped and added as columns to the an-
swer sheet of Java questionnaire. Among the participants of Java questionnaires,
there was one participant who did not take part in answering the experience ques-
tionnaire. The answer of this participant could not be fully analyzed. Whereas, it

41

5 Results

Java C Python J&C C&P J&P J&C&P None Sum
1 44 4 4 19 1 1 17 91

Table 5.1: Programming Experience Distribution of Participants

is still useful to look into details of this response, so it was retained for it is maxi-
mum use. There were five levels of programming experience provided as answers to
the three experience questions: very inexperienced, inexperienced, medium, experi-
enced, very experienced. As long as a participant has experience above or equal to
medium level, he or she was considered have programming experience in this PL.
If the experience level is very inexperienced or inexperienced, this participant was
considered not having experience in this PL. A participant could have programming
experience of one PL, have experience in some PLs, or have no knowledge of pro-
gramming. Therefore, there are 8 types of programming experience in this research:
experience in C, experience in Java, experience in Python, experience in Java and
C (J & C), experience in C and Python (C & P), experience in Java and Python
(J & P), experience in Java, C and Python (J & C & P), and no experience in
programming (None).

5.2 Descriptive Analysis

In this section, content related to descriptive analysis is introduced. The subjects
of this experiment is displayed statistically in section 5.2.1. The analysis of answers
of Java questionnaire is presented in charts in section 5.2.2.

5.2.1 Description of the Subjects

The participants took part in the experiment were novice programmers having var-
ious programming background. The different types of programming background of
participants are Java, C, Python, Java and C, C and Python, Java and Python,
Java, C and Python, and no programming background. Except for the one partici-
pant mentioned earlier whose programming experience was unknown, the statistics
of programming experience is shown in the Table 5.1. There were 68 students who
have knowledge programming in C PL, 25 students who have knowledge program-
ming in Python, and 7 students who have knowledge programming in Java.

5.2.2 Java Questionnaire Results

After receiving the answer sheet of Java questionnaire, the first thing being done
was to perform the preprocessing. Afterwards, a answer sheet with all the valid data
was created.
Aiming for checking the correctness of the answers and having a complete look

at all the data, the answers of participants were categorized firstly into 7 types:

42

5 Results

”correct answers”, ”wrong answers”, ”not sure”, ”I do not know”, ”not finished”,
”abort”, and ”none”. ”Correct answers” means that the answer was correct, but
may not in exactly the same form as the actual output of the snippet. These cor-
rect answers showed that participants understood the snippets and may experience
positive transfer. ”Wrong answers” stands for answers that were not correct, but
they sometimes contained information of how participants comprehended the code
snippets. The participants wrote a wrong answer may fail to transfer their previous
knowledge, or the question contained concepts in FCC or ATCC category. ”Not
sure” means that the participants clearly stated in their answers that they were not
sure about the answer they gave. This type of answer is different from the wrong
answers because the thoughts of the participants were different. The students who
wrote a wrong answer may make a mistake, but he or she did not have doubts about
coming up with the answer. These students who said that they were not sure about
the answer were struggling from making a decision. They noticed that there was
something wrong, and part of their answers could be correct. ”I do not know” were
answered by participants when they did not know the answer and could not make
a guess. ”not finished” refers to answers that specifically stated that participants
were not able to finish the question. The reason why students were not able to finish
the questionnaire was unknown, since there was no limitation of time used answer-
ing all the questions. ”abort” stands for the answers that students wrote ”Abort”
or something like that. These answers show that students might not have time to
finish the questionnaire similar to the ”not finished” ones, the students might have
no patience to answer the questionnaire anymore, or the students might not know
the answer similar to the ”I do not know” ones. The last type of answer is ”none”,
which refers to blank answers that participants did not write anything for those
questions.
Bar charts are a popular and effective way to present data in different categories.

They are straightforward and easy to understand, and present data in a clear and
simple manner. Therefore, they were chosen to conduct a comprehensive review of
the valid data.
For each question, a bar chart was created to display the distribution of differ-

ent types of answers. The chart of the first question is shown in Figure 5.1. The
first question contained concepts in FCC category for students with C and Python
programming backgrounds. According to the figure (see at Figure 5.1), the most
answers to the first question are ”wrong answers”, which was the same as the ex-
pectation for these participants. This may show that these participants experienced
negative transfer processes during comprehending the snippet. 13 participants had
correct answers. One participant was not sure about his or her answer, and also
one participant did not understand the snippet. Two participants left the question
blank.

43

5 Results

Figure 5.1: Bar Chart of Answers of Question 1 - Variable Type

Figure 5.2: Bar Chart of Answers of Question 2 - Variable Scope

The Figure 5.2 shows the results of the second question. This question contained
TCC concepts considering C PL, and FCC concepts considering Python. However,
there were 76 wrong answers, and only 11 answers are correct. This is contradictory
to the assumptions for students having knowledge in C. 3 students were not sure
about their answers, and 2 students did not write anything for this question.
In the third question, there was only a while-loop in the snippet. The concepts

are in TCC type to C and Python, therefore, more correct answers were expected.
According to Figure 5.3, the most frequently seen answer is ”correct answer”, which
is consistent with the expectation. However, there are still 29 wrong answers. Expect
for 2 students did not answer the question, other types of answers were not found

44

5 Results

Figure 5.3: Bar Chart of Answers of Question 3 - While Loop

in responses of this question.

Figure 5.4: Bar Chart of Answers of Question 4 - String Comparison

There are 74 wrong answers, 5 correct answers, and 3 blank answers in the fourth
question (see at Figure 5.4). 2 students were not sure about their answers. 8 students
chose to answer ”I do not know”. This question was focus on the usage of ”==”,
hence the concept is in the FCC category to both C and Python. Students having
knowledge of C or Python might answer it wrongly. The results of this question
supports this assumption.
According to the result of fifth question shown in Figure 5.5, there are 66 correct

answers, 12 wrong answers, 3 ”not sure” answers, 5 ”I do not know” answers, and

45

5 Results

Figure 5.5: Bar Chart of Answers of Question 5 - Method Calling

6 blank answers. This question was about methods in Java, and students having
different programming backgrounds were expected to have positive transfer and
answer it correctly. The result supports this expectation. There is one thing that
needed to be noticed: the number of students writing nothing for the result has
increased from 2 to 6. This may show the decrease of students’ patience for the
questionnaire, or show that there are problems in the design of the questionnaire
(number of questions in the questionnaire, or the difficulty of questions).

Figure 5.6: Bar Chart of Answers of Question 6 - Object Reference Assignment

The sixth question was about concepts of classes, methods, and objects. These
concepts are FCC-type to C, but TCC-type to Python. Shown in Figure 5.6, there
were 54 students answering it unsuccessfully, and only 6 students had correct answer.

46

5 Results

1 student was not sure about the answer. 17 students said that they did not know
the answer. 1 student clearly wrote that he or she aborted this question. 13 students
did not write anything. This shows that at least 71 students faced negative transfer
in comprehending this snippet, which supports the assumption for C-background
students. However, for Python-background students, more analysis needed to be
done.

Figure 5.7: Bar Chart of Answers of Question 7 - Memory Allocation

There was an obvious increase in number of students who did not know the answer
in results of seventh question (see at Figure 5.7) comparing to previous questions.
The maximum number of students with ”I do not know” answers was 17 for the first
six questions, and for this question, the number is 28. This may be caused by the
increase in difficulty of the question to novice programmers. Besides, the concept
about memory allocation contained in this question belongs to ATCC category for
C and Python. Therefore, students would not have any related knowledge, and
no transfer was expected. The answers of ”I do not know” in a way support the
expectation. There are still 2 correct answers, 31 wrong answers, 1 abort answer,
among the responses. The number of empty answers (30 in this case) had increased
since this question as well.
There were two lines of code in the eighth question each calling the print line

function in Java and outputting the connection of strings or the connection of a
string and a number. The concept contained in this question is the usage of ”+”
when concatenating strings, or concatenating strings and numbers, which is in FCC
category for C and Python. Hence, students were expected to have mostly wrong
answers. According to the bar chart of the eighth question (see at Figure 5.8),
36 students answered it unsuccessfully, while 25 students had correct answers. 4
students said that they did not know the answer, and 2 students aborted to answer
this question. This result supports the assumption that more students came up

47

5 Results

Figure 5.8: Bar Chart of Answers of Question 8 - String Concatenation

with wrong answers, and they were likely to experience negative transfers when
comprehending this snippet.

Figure 5.9: Bar Chart of Answers of Question 9 - Array Length

From the bar chart of this question (see at Figure 5.9), the number of empty
answers had increased again. There was 43 blank answers. Students might loose
patience to the questionnaire due to some difficult questions. This suggests that
the questions in the questionnaire should present the concepts using snippets as
simple as possible. There are 1 student who clearly expressed that he or she did not
finish the question, while 2 students wrote ”Abbruch” as the answer. Apart from
these invalid answers, there are 17 correct answers, 13 wrong answers, 2 ”not sure”
answers, 14 ”I do not know” answers. To students who have programming experience

48

5 Results

in C, the concepts covered in this question belong to the TCC category, so more
correct answers were expected. They might go through the positive transfer process
when understanding the snippet. For Python-background students, the concepts
are in ATCC category, and no special influence on the results was expected. They
experience no transfer during comprehension.

Figure 5.10: Bar Chart of Answers of Question 10 - OOP Related

The invalid answers increased again in the result of the tenth question, and almost
half of the students did not answer it (see at Figure 5.10). Among the rest responses,
18 answers are correct, and 10 answers are wrong. Considering the concepts con-
tained in the snippet, they are in ATCC category for C, and TCC category for
Python. So more correct answers were expected in responses of Python-background
students, and no influence was expected in responses of C-background students.
The correct answers of this question is more than incorrect ones, which supports the
assumption of Python-background students. However, there were only 25 students
having background in Python, and not all of them had correct answers, so further
analysis needed to be done. Besides correct and wrong answers, there are 1 student
who was not sure about the answer, 11 students did not know the answer, 2 students
stated that they did not finish the question, and 3 students aborted the question.
Taken as a whole, all the answers initially answered the research questions and

basically supported the hypotheses. To novice programmers having only program-
ming knowledge in C and those having knowledge in other PLs, positive transfer,
negative transfer, and no transfer were all observed. When comprehending Java
snippets containing concepts in TCC category of their learned PLs, students tended
to have correct answers which could be explained as signs of positive transfer. This
assumption can be verified through the results of the third and fifth question. The
second question was expected to have more correct answers, however, the result
showed that most students with C or Python background answered it wrongly. The

49

5 Results

reason behind this will be discussed in the following sections. When comprehending
Java snippets containing concepts in FCC category of their learned PLs, students
were more likely to come up with wrong answers which could be explained as signs
of negative transfer. This assumption can be proved in the first, fourth, sixth, eighth
question. For Java snippets containing concepts in ATCC category of their learned
PLs, students might comprehend them correctly or wrongly. This could mean that
no transfer happened in this comprehension process.
The results showed that the correctness of novice programmers is strongly related

to the syntactic and semantic relationship between the concept in two PLs. Even
though C and Java share a lot of syntactic similarities, it is still hard for novice
programmers to positively transfer their previous knowledge. The situation is the
same to Python. The syntactic similarities is not as helpful as expected to novice
programmers. Details of the discussion will be introduced in the following section
and in the Discussion chapter.

5.3 Categorization of Results

The former section presented the results of the experiment by showing a broad way
of categorizing the answers. A bar chart was created for each question to better
present the statistics. In this section, a more detailed analysis was done. For each
question, a series of categories were created focusing on the type of mistakes novice
programmers made. By analyzing these mistakes, the intuitive knowledge transfer
of novices is more thoroughly observed.
Before creating the tables, the data is processed again to remove the useless re-

sponses. As mentioned above, there are blank answers for all of the questions. They
are not helpful for analyzing the relationship between the intuitive knowledge trans-
fer and the programming knowledge background of novice programmers. Hence, all
the blank answers needs to be removed from the answer sheet. In the actual data
processing procedure, the removal was done by marking the related cells of answer
sheet to grey color. Afterwards, responses left in the answer sheet were reviewed one
by one and categorized into different groups. By analyzing the similarity between
answers in the same group, a name for this type of answer was created. If the num-
ber of responses included in a group of answers is relatively small, this group would
be included in the category named ”other”. During the categorization process, one
answer from a student is classified into only one category.

5.3.1 Categories of Question 1 - Variable Type

By following the procedure described in the last paragraph, the table of the first
question can be found at Table 5.2. As shown in the table, there are four categories
created from the answers of participants. There were two blank responses removed,
and the valid responses are 91 for this question. There are 23 answers in ”Type
Incompatibility” category, 50 answers in ”Type Casting Misconception” category,

50

5 Results

Type
Incom-
patibility

Type Casting
Misconception

Correct
Answers

Other Sum

Java 0 0 1 0 1
C 8 27 5 2 42
Python 2 1 1 0 4
J & C 2 1 1 0 4
C & P 5 11 3 0 19
J & P 0 0 1 0 1
J&C&P 1 0 0 0 1
None 5 10 1 1 17
Sum 23 50 13 3 89

Table 5.2: Categorization of Results in Question 1 - Variable Type

13 correct answers, and 3 answers in ”Other” category.

5.3.1.1 Review of Question

As a reminder, the first question is about variable declaration and assignment in
Java. The concepts contained belong to FCC-type comparing to C, and also FCC-
type comparing to Python. The snippets of question-1 can be found at Figure 4.1.

5.3.1.2 Categories Elaboration

Shown in the Table 5.2, the first category is named ”Type Incompatibility”. The
answers included in this category are 10 and 11. Students who wrote these two
answers simply did a rounding to the float number 10.5 or truncated it. They
guessed that a float number can be assigned to an integer variable as long as the
float number was changed into the type of integer. However, the variable ”a” was
declared as an integer, which usually does not change in Java. Therefore, assigning
10.5 to this integer variable ”a” will result in ”error when compiling”. In C, if a
float number is assigned to an integer variable, and if the result is printed using
"printf("%d", varName)", there will be no compilation error. Even though there
will also be warning messages, the code still works, and the output will be 10. The
float number is truncated, and only the integer part remains. Therefore, the students
who answered 10 or 11 were believed to have background in C programming. The
distribution of participants in this category does show that most participants have
C background (69.6%).
The second category is ”Type Casting Misconception”, and contains the answers

”10.5” and ”1”. The students who answered ”10.5” had misconception about the
type of the variable in a obvious way, while the students with the answer ”1” also had
doubts about the type of the variable. Those students who wrote ”10.5” changed
the type of variable ”a” from an integer to a float number. They might believe that

51

5 Results

the type of a variable varies depending on the value it has. The students who wrote
”1” did not execute the second assignment of ”a”. They could have noticed that
there were some problems with assigning an integer variable with a float number,
but they still did not think the code would not work because of it. If a float number
is assigned to a variable in Python, the type of the variable will change according
to the number. This is because variables in Python are dynamically typed, which
means it is not necessary to explicitly declare the type of a variable when creating
it. So the answer ”10.5” was believed to be the answers of Python background
students. Among 25 students with Python background, 12 of them had answers in
this category, which supports this assumption.
The third category is ”Correct Answers”. There are 13 students (14.6%) correctly

answered this question without the influence of concepts in FCC type. There are 7
student with Java knowledge, however, only 3 of them answered correctly. Because
they are still novices in programming, the other 4 students might be influenced by
their knowledge in C. Even though half of the students only having C programming
knowledge answered the question wrong, 5 of them were correct.
The last category is ”Other” containing three different answers. A student said

that there would be an error message because the variable ”a” was assigned two
values. Besides, this student had programming background only in C. The answer
showed that the student still really lacked the experience in programming. One
student wrote ”I do not know”, which means that perhaps the student also noticed
the problem in the snippet, but was struggling to make a decision. The last answer
in this category was poorly formed in grammar and was hard to understand. Hence,
it could only be given up during analysis.
From the students’ solutions to this question, the majority of them are wrong

answers, which indicates the difficult students had when comprehending the code
snippet. This result can be considered to support the idea in Hypothesis 2 and 4
that negative transfer would be experienced by novices when they facing FCC-type
concepts.

5.3.2 Categories of Question 2 - Variable Scope

The categories of the second question can be found in the Table 5.3. Five categories
were created, which include ”For-loop Concept Misconception”, ”Code Execution
Misconception”, ”Variable Scope Misconception”, ”Correct Answers”, and ”Influ-
enced by C”.

5.3.2.1 Review of Question

This questions contained a for-loop, and a string type variable was declared inside
the loop. Outside the loop, the variable was printed again without declaration,
which caused an error when compiling. This concept is in the TCC category when
comparing to C, and in the FCC category when comparing to Python.

52

5 Results

For-Loop
Concept
Miscon-
ception

Code Ex-
ecution
Miscon-
ception

Variable
Scope
Miscon-
ception

Correct
Answers

Coding
Knowl-
edge
Missing

Sum

Java 0 0 0 1 0 1
C 4 14 16 7 1 42
Python 0 2 2 0 0 4
J & C 0 1 1 2 0 4
C & P 2 4 9 3 1 19
J & P 0 1 0 0 0 1
J&C&P 0 0 1 0 0 1
None 1 5 7 0 4 17
Sum 7 27 36 13 6 89

Table 5.3: Categorization of Results in Question 2 - Variable Scope

Considering the large number of participants having programming experience in
C, there should be more correct answers. However, the results are not as expected.
There are only 13 people in the category of ”Correct Answers”.

5.3.2.2 Categories Elaboration

The first category of mistakes is called ”For-loop Concept Misconception”. It con-
tains answers such as ”Hello” and ”Hello Hello Hello Hello”. Even though the actual
output is nothing due to compilation error, there should be only two ”Hello” strings
printed from the loop. Therefore, students who wrote these answers did not correctly
understand the condition of the for-loop. They might miscalculate the increase of
variable ”i”, and thought only one string would be printed. They might also have
problems with the ”i++” part, and thought that this would cause the string to be
printed for twice in one loop. This type of mistake is caused by the lack of program-
ming knowledge, and is not related to a specific PL closely. The number of responses
in this category is 7 which shows that most of the participants of this questionnaire
have basic knowledge of programming and fit the definition of a novice programmer.
There are 27 participants having the ”Code Execution Misconception” mistake.

They wrote two ”Hello” strings as the answer to this question. These participants
understood the for-loop correctly, and also knew that the string variable declared
inside the for-loop would not be printed outside the loop. However, they have
misconception that a code can still run even if there are compilation errors. This
misconception is likely to be caused again by the lack of programming knowledge.
Maybe at the beginning of their learning phase, novices tend to read books or
websites, instead of writing and running codes.
In the third category, ”Variable Scope Misconception”, there are 36 responses.

The answer in this category is three ”Hello” strings. These students with the answer

53

5 Results

were believed to have Python programming background. They might think that
there were two ”Hello” strings printed from executing the for-loop, and one ”Hello”
string printed by the last line of code outside the loop. This is actually the result
of running the code in Python. Python uses a ”lexical scoping”, where the scope of
a variable is determined by its location in the source code rather than the specific
block in which it is defined. Hence, in Python, the snippet will have three ”Hello”
strings as the output. Whereas, in Java, ”block-level scoping” is used, which refers to
the concept that the scope of a variable is limited to the block (a set of statements
surrounded by curly braces) in which it is defined. So, only two strings will be
printed if the last line of code causing the compilation error does not exist.
The fourth group is ”Correct Answers”. Because the concepts of For-loop and

variable scoping in Java are in TCC category to C, more correct answers from
students having experience in C were expected. However, there were only 7 students
with C experience in this category, 2 students with Java and C experience, and 3
students with C and Python experience. The correct rate was 14.6%. The result
shows the difficulty students have transferring from C to Java. There was no student
with only experience in Python in this category, which shows that negative transfer
was very likely to happen in the comprehension process of these students.
The last group is named ”Coding Knowledge Missing” because the answers in this

category could be assumed to present the influence of missing basic programming
knowledge. The answers included in this group are ”He” and ”Hel”. At first, the
reason why students got these two answers was not clear. There was no way that a
for-loop presented in this question (see at Figure 4.2) could lead to these strings. The
possible results should be different times of ”Hello” string. Then, it was found that
these two strings were both part of the string ”Hello”. Hence, the students who wrote
these answers might think that the condition of this for-loop stood for going into each
letter of the string. As long as a student has basic knowledge of programming, the
way to access each position of an array will be learned. Therefore, these two answers
were caused by missing basic coding knowledge. The distribution of students proves
this assumption, since 4 out of 6 students did not have any programming experience.
However, there were still 2 students who had programming knowledge in C. This
could be explained that these 2 students had seen code snippets dealing with strings
in C before but did not remember clearly the way of implementing it.
The responses support the hypothesis 4 (H4) that novice programmers have dif-

ficulty transferring from C to Java due to the differences between programming
paradigms. It also supports the hypothesis 2 (H2). Four students with only Python
programming experience were unsuccessful when solving this problem. Eighteen
other students with Python experience also answered it wrong. This shows that
these students were having difficulty solving this problem, and negative transfer
was observed when they comprehending code snippet containing concepts in FCC
category.

54

5 Results

5.3.3 Categories of Question 3 - While Loop

The Table 5.4 shows the categorization of mistakes in the third question. Shown

While-
Loop
Concept
Miscon-
ception

i++
Miscon-
ception

While-Loop
Condition
Misconception

Correct
Answers

Sum

Java 0 0 0 1 1
C 12 1 2 27 42
Python 1 0 0 3 4
J & C 0 0 0 4 4
C & P 4 0 0 15 19
J & P 0 0 0 1 1
J&C&P 0 0 0 1 1
None 8 1 0 8 17
Sum 25 2 2 60 89

Table 5.4: Categorization of Results in Question 3 - While Loop

in this figure, there are four categories created from the mistakes that students
made: ”While-Loop Concept Misconception”, ”i++ Misconception”, ”While-Loop
Condition Misconception”, and ”Correct Answers”.

5.3.3.1 Review of Question

The code snippet in this question was about while-loop in Java. Firstly, an integer
variable ”i” was declared at the first line, and it was used for counting the iterations.
The condition of the while-loop asked if the variable was smaller than 2. If so, the
body of the loop was executed, and variable ”i” was printed as well as increased
by 1. The snippet can be found at Figure 4.3. When executing this snippet in
Java, the result will be ”0 1” without compilation errors. The concept of while-loop
contained in this snippet belongs to TCC category to both C and Python, therefore,
more correct answers were expected.
The actual results of this question are consistent with the expectation. Among

89 valid responses, 60 of them are correct answers.

5.3.3.2 Categories Elaboration

In the first category, there are 25 responses. The programming experience partic-
ipants had with largest number of responses belong to this category is experience
in C programming (48.0%). Besides these 12 participants, there are 4 other partic-
ipants with programming background in C. Only one participant had knowledge in

55

5 Results

Python. 8 of them have no knowledge of programming. The answers these partici-
pants provided were ”0”, ”1”, ”2”, and ”3”. Since the snippet contains a while-loop,
the answer should at least represent a series of numbers that form outputs of a loop.
However, it is clear that these answers are just single numbers which do not have
the features mentioned. Therefore, these participants were assumed to not have the
complete knowledge of while-loop. The result ”0” could also be categorized into
the second kind of mistake, because the students writing this answer might think
that ”i++” increased the value of variable ”i” for twice. In this case, after printing
the initial value of ”i” (0), the value was changed to 2, and 2 did not fulfill the
requirement of the condition of while-loop. The loop ended with only one output
0. However, this answer was still categorized into ”While-Loop Concept Miscon-
ception” because it is hard to decide what the participants were thinking without
asking them further questions. Besides, the mistakes they had comparing to those
of the participants currently separated in the second category are distinct. This
type of mistake, ”While-Loop Concept Misconception”, is assumed to be caused by
the lack of programming knowledge, so it is not related to specific PLs.
In the second category named ”i++ Misconception”, there are 2 different re-

sponses: ”0 0”, and ”infinite loop 0”. The student with answer as ”0 0” seemed to
know that the loop body was only executed for twice. Whereas, due to unknown
reasons, the printed value of variable ”i” did not change. It is more obvious that the
student who wrote ”infinite loop 0” had trouble understanding ”i++”. The value of
”i” was supposed to increase each time the loop body was executed. According to
the understanding of this student, the value of ”i” did not change, and the loop body
was run continuously. The responses in this category were believed to be influenced
by the lack of programming knowledge again, and are not related to any PL.
The third category is about condition of while-loop. There are 2 identical re-

sponses included: ”0 1 2”. The answer shows that the students knew about how
to execute a while-loop. Nevertheless, the loop body should be executed only for
twice according to the condition of the loop. In this case, after the value of ”i” was
changed to 2, the students still ran the loop body for once and printed the value 2.
This situation demonstrates that these students did not understand the condition
of the while-loop accurately. They might be less experienced in programming.
The majority of students (67.4%) answered this question correctly, which met

the expectation of answers of this question. Since the concept included in this
question belongs to the category TCC comparing to C and Python, positive transfer
is more likely to be experienced by participants. The results obviously support this
assumption and also support the hypothesis 1 (H1).

5.3.4 Categories of Question 4 - String Comparison

The Table 5.5 presented the categories created from results of the fourth question.
The categories of different answers of this question are: ”String Comparison Un-
available” , ”Value Comparison”, ”== Return Value Misconception”, ”Usage of
== Missing”, ”Correct Answers”, and ”Other”. One thing to note is that the total

56

5 Results

String
Com-
parison
Unavail-
able

Value
Com-
pari-
son

“==”
Return
Value
Miscon-
ception

Usage
of
”==”
Miss-
ing

Correct
An-
swers

Other Sum

Java 0 0 0 0 1 0 1
C 5 20 7 3 2 5 42
Python 0 2 1 0 0 1 4
J & C 0 2 0 1 1 0 4
C & P 0 14 3 0 1 1 19
J & P 1 0 0 0 0 0 1
J&C&P 0 1 0 0 0 0 1
None 2 10 0 2 0 2 16
Sum 8 49 11 6 6 9 88

Table 5.5: Categorization of Results in Question 4 - String Comparison

number of valid answers to this question has decreased compared to the previous
questions. This results from removing blank answers.

5.3.4.1 Review of Question

The fourth question focused on using ”==” to compare two objects. The code
snippet of it can be seen at Figure 4.4. Two string type objects were created with
the same value ”lab”. Then, these two objects were compared using ”==”, and the
result of the comparison was printed. In this example, the references of the two
objects were compared, hence, ”false” was printed in the end.
In C programming, if the content of two strings need to be compared, strcmp()

function is often used, and the output of the function is 0 when two strings have
the same content. The == operator is also used in C for equality comparison, and
compares the values of two variables to determine if they are equal. If two integers
are compared using ”==”, the result is ”True” which is a boolean-type value. In
Python programming, if two variables are assigned with the same string, the result
of ”a == b” is ”True”.
Looking at the cases in C and Python, the concept contained in this question is

in FCC category for both languages. Thus, more incorrect answers might be came
up with by participants. They were also more possible to meet negative transfer.
To confirm the assumption, different categories are discussed here.

5.3.4.2 Categories Elaboration

The first category is named ”String Comparison Unavailable”, which includes 8
responses from participants. In this category, the types of response included are:
”No output”, ”No output and compiler error”, and ”Error (cannot compare strings

57

5 Results

with ==)”. These participants thought that there was something wrong using
”==” to compare two strings. This action would lead to compilation error, and no
output would be created. The thought of them was assumed to be influenced by
knowledge in C programming, because the content of two strings cannot be compared
directly using this method. However, this form of comparing two strings is allowed
in C, and the addresses of strings will be compared. Hence, these participants have
misunderstanding about using ”==” to compare two strings, but they were partially
correct. The number of participants with C programming experience (5) was the
highest among all programming backgrounds. This result supports the assumption
of hypothesis 2 (H2).
The second category, ”Value Comparison”, contains the highest number of re-

sponses (55.7%). ”True”, ”1”, and ”True or 1” are included in this category. ”True”
is a boolean value, while ”1” are often used to represent positive feedback in the
learning process of novice programmers. Students who wrote these answers thought
that ”==” was used to compare the content of the objects in this snippet. They
might get this thought from their experience in Python programming. They might
also have the same thought because they always used this method to compare two
integers in C coding. The distribution of responses shows that a lot of students with
C programming experience and Python programming experience came up with the
same responses, which proves that the hypothesis 2 (H2) and hypothesis 4 (H4) are
very likely to be accepted.
The third category, ”== Return Value Misconception”, contains answers such as

”lab”, and ”Print both strings”. The students whose answer was ”lab” might think
that the content of the string object would be printed if the result of comparison
is equal. They also thought that this method compared the actual content of the
objects, but the new problem in this case is misunderstanding of the return value of
”==” comparison. For students whose answer was ”Print both strings”, it is possible
that they believed the last line of code ("System.out.println(a==b);") meant
printing the content for both string objects. There is another potential explanation
that they might think both string objects would be printed as long as the result
of comparison was equality. These students all had mistakes comprehending the
return value of ”==” comparison. This case was believed to be caused by lack of
programming knowledge or lack of Java programming knowledge, and is not related
to a specific PL.
The next category is named ”Usage of == Missing”. The answers included in

this category are: ”Wrong expression for printout”, "new String("lab")==new

String("lab"), and ”lab==lab”. The students with ”Wrong expression for print-
out” answer thought that an error existed in the format of ”println” function. The
students whose answer is "new String("lab")==new String("lab"), or ”lab==lab”
might have similar understanding of the snippet. They believed that the two ob-
jects on either side of the comparison operator would be replaced by the value of
the objects, and the whole expression was printed by the ”println” function. The
difference between these two group of students is that the first group of students did
not have the knowledge of creating a new object. These answers all indicate that

58

5 Results

students whose answer is classified into this category did not have the knowledge of
using ”==” operator to compare something. This situation is not related to a PL,
and is owing to the students’ inadequate understanding of programming.
Students with correct answers (6.8%) had various programming background. There

are one student with Java programming experience only, two students with C pro-
gramming experience only, one student with knowledge in Java and C, and one stu-
dent with knowledge in C and Python. Among these six participants, two of them
had learned Java. This case provides another perspective that most participants
faced problems when transferring their previous knowledge to the new context.
The last category of the results is ”Other”, and only answers did not provide

an opinion to the question were classified into this category. These students said
that they did not know the answer, or they had no idea about the answer, which
indicates that they might have less programming experience. However, there are 5
students with C programming background also stated that they did not know the
answer. This circumstance could be a sign that these C-background students had
trouble comprehending the Java snippet.
Considering all the results, the first two categories of responses support the hy-

pothesis (H2) that novice programmers are more likely to face difficulty when trans-
ferring their previous knowledge to a context that contains FCC-type concepts. The
results also present that negative transfer is commonly seen when novices transfer-
ring from C to Java (H4).

5.3.5 Categories of Question 5 - Method Calling

The classification of results of the fifth question is shown in Table 5.6.

Correct
An-
swers

Method
Param-
eters
Miscon-
ception

Method
Cre-
ation
Miscon-
ception

Class
Knowl-
edge
Missing

Method
Access
Knowl-
edge
Missing

Other Sum

Java 1 0 0 0 0 0 1
C 31 3 3 0 0 5 42
Python 4 0 0 0 0 0 4
J & C 3 0 0 1 0 0 4
C & P 14 3 0 0 1 0 18
J & P 1 0 0 0 0 0 1
J&C&P 1 0 0 0 0 0 1
None 12 0 0 0 0 2 14
Sum 67 6 3 1 1 7 85

Table 5.6: Categorization of Results in Question 5 - Method Calling

59

5 Results

5.3.5.1 Review of Question

This question is about methods in Java. The code snippet of this question can be
found at Figure 4.5. Inside the main class, a method named ”gen” taking in two
parameters was first created. Then, in the main method, this ”gen” method was
called, and the return value of the method was printed using ”println” method.
Even though the methods in Java have different syntactic features comparing to

functions in C and Python, the overall syntax is similar. Therefore, this concept is
in TCC-type for both C and Python. Participants should be able to answer this
question correctly and had less difficulty understanding it.

5.3.5.2 Categories Elaboration

The number of answers (67) classified into ”Correct Answers” category supports the
assumption mentioned above, because 67 out of 85 students (78.8%) understood the
snippet correctly. One kind of answer in this type is ”14”. These students passed the
values of the parameters to the ”gen” method, and multiplied the value of ”g” by 2.
The result was then returned to the ”println” method, and 14 was printed. Another
kind of answer is ”14, (warning) s not used”. These students not only calculated
the correct output, but also noted that there should be a warning message. They
were likely to have more programming experience, or grasped the programming
knowledge thoroughly. When similar code snippets in C and Python are executed,
the same process will be performed. This thinking process shows that reason why
a lot of students answered it correctly is that they might have positive transfer
during the comprehension process. Consequently, the students whose answer is in
this category were believed to have programming experience in C and Python. This
category supports the idea in hypothesis 1 (H1) that it is easier for novices to transfer
their knowledge to contexts containing concepts in TCC category.
The second category is named ”Methods Parameters Misconception”. There are

6 students in this group, and all of them have C programming knowledge. The
answers included in this category expressed that there was an error caused by not
using the other parameter of the method. For example, some students said that
”Error, s not used”. These students thought both parameters of the method should
be used. There are a lot of IDEs, such as Eclipse, suggest that all the variables
declared or passed to a function should be useful to part of the following code. If
a variable has no effect after being declared, a warning may appear pointing at the
variable. This point has been pointed out by students in the category of correct
answers. In some other IDEs, unused variables will be colored in grey. So it is
considered a good practice to avoid useless parameters as intended to maintain code
clarity and readability. However, in PLs like C, Python, C++, and Java, it is not
strictly necessary to use all the parameters passed to a function within the function
body. Besides, the decision to use or ignore specific parameters depends on the
requirements and logic of the function. Hence, the students had misunderstanding
about the usage of parameters of a method.

60

5 Results

The third category, ”Method Creation Misconception”, contains 3 answers. The
three participants in this group only had programming knowledge in C. Their an-
swers to the question was: ”Error, no gen”. These students thought that there
would be an error when calling the method ”gen” in the main method because it
was not declared. However, the method ”gen” was the first thing created in the
main class. Thus, these students might not know the way of creating a method in
Java. They could not find the declaration of the ”gen” method, even if the declara-
tion of the method in Java has similarities to the declaration of the function in C.
Even though this question was expected to be successfully solved, the syntactical
details were still difficult to comprehend for novice programmers. This situation
supports the hypothesis 4 (H4), and reveals that even little difference could lead to
misunderstanding of novices.
In ”Class Knowledge Missing” category, there are one student with Java and C

programming background. The student expressed the doubts in understanding the
code by saying that there were issues with how the Main Class was being created and
referenced in the snippet. However, there should be no problem with the creation
of Main class since this code snippet can be directly executed in a Java IDE. The
answer shows that this student had learned Java programming, but maybe some
knowledge of class was still missing.
The next category is named ”Method Access Knowledge Missing”, which has one

response. The student wrote only ”a” for the answer. This is the return value of
the ”gen” method, nevertheless, there were numbers as the value of the parameter
passing to the method when it was called. Consequently, the output of the snippet
should at least be a number. The answer ”a” indicates that the student did not
understand or did not understand correctly the access of ”gen” method in the main
method. This result was believed to be caused by lack of programming knowledge,
whereas, the student had programming background in both C and Python. More
analysis need to be done to explain this situation.
The last category is ”Other”. The answers classified into this category are: ”I do

not know”, ”56”, and ”creates a new string”. The students who said that they did
not know the answer had trouble comprehending the snippet because they might
lack Java programming experience and cannot find out the solution. One possible
way to understand the answer 56 is that the student passed the number 7 to variable
”g”, the number 3 to variable ”a”, and multiplied 7 by 2 for three times. This student
is highly possible not to have programming experience, and was influenced by the
two questions with loop earlier. The student with the last type of answer might also
lack experience in programming.
The responses of this question are good examples of positive transfer when novice

programmers dealing with concepts in TCC-type. 78.8% of the participants an-
swered it successfully. This result increases the chance of accepting the hypothesis
1 (H1). Nevertheless, the rest part of participants still had problems understanding
the snippet, which represents the influence of differences in syntax of Java, C, and
Python.

61

5 Results

5.3.6 Categories of Question 6 - Object Reference Assignment

There were 7 categories formed from the responses of the sixth question (see at Table
5.7). There are 12 out of 78 (15.4%) participants answering the question correctly,
and 66 participants met different types of problems.

5.3.6.1 Review of Question

The snippet was about concepts of classes, methods, and objects, and can be found
at Figure 4.6. In the snippet, firstly two variables were declared inside the class
named ”Robot”. Then, a constructor method of Robot and a method named ”agga”
were created. In the main method, two objects named n1 and n2 were declared and
initialized. Then, ”println” method printed the ”num” attribute of the object n1.
After the assigning n1 to n2 and increasing the ”num” attribute of n1 by calling
”agga” method, the ”num” attibute of n2 was printed. The actual result of this
Java snippet would be ”51 53 53”, because the assignment made n2 point to the
same address as n1. There is one thing to be noticed that the second number being
printed was produced by the ”agga” method.
In C programming, if similar data structures and functions were created, only

the value of n1 will be passed to n2 through the assignment ”n2=n1”. When the
”num” attribute was changed afterwards, the value stored in n2 will not be affected
and remain the same. The result in this case will be ”51 53 51”. Therefore, the
concepts contained in this snippet are in FCC category comparing to C programming
language.
Python supports OOP just like Java does. Hence, similar things in the snippet can

also be achieved in Python codes. The assignment has the same semantic meaning
as in Java. As a result, exactly the same result will be outputted when executing
the code, which is ”51 53 53”. The concepts are in TCC category in this case.

5.3.6.2 Categories Elaboration

The first category is ”Correct Answers”. The students whose answer was correct
were expected to have background in Python programming. As shown in the Table
5.7, 50% of these students had Python programming knowledge, which supports
the expectation and indicates that they had positive transfer during solving this
question. The result also supports the hypothesis 1 (H1).
The second category is named ”Assignment Misconception”, which includes an-

swers that stated ”51 53 51” as the output. The output is the same as executing
the similar snippet in C, hence, it was believed that more students in this group
have background in C programming. The actual statistics shows that there are 8
students with only knowledge in C, 1 student with knowledge in Java and C, 3 stu-
dents with knowledge in Python and C, and 1 student with knowledge in these three
PLs. Therefore, the total number of students having experience in C is 13, which
occupies 68.4% of the students in this group. This result supports the assumption.

62

5 Results

C
o
rr
e
ct

A
n
sw

e
rs

A
ss
ig
n
m
e
n
t

M
is
co

n
-

ce
p
ti
o
n

N
o

M
e
th

o
d

K
n
o
w
l-

e
d
g
e

M
e
th

o
d

M
is
co

n
-

ce
p
ti
o
n

C
o
d
e

E
x
-

e
cu

ti
o
n

M
is
co

n
-

ce
p
ti
o
n

A
ss
ig
n
m
e
n
t

N
o
t

N
o
-

ti
ce

d

O
th

e
r

S
u
m

J
av
a

1
0

0
0

0
0

0
1

C
3

8
8

1
6

0
15

41
P
y
th
on

0
2

0
0

1
0

0
3

J
&

C
1

1
1

0
0

0
1

4
C

&
P

5
3

3
0

0
2

2
15

J
&

P
1

0
0

0
0

0
0

1
J
&
C
&
P

0
1

0
0

0
0

0
1

N
on

e
1

4
0

0
1

1
5

12
S
u
m

12
19

12
1

8
3

23
78

Table 5.7: Categorization of Results in Question 6 - Object Reference Assignment

63

5 Results

These students thought that ”n2=n1” only copied the values of n1 to n2, thus,
the value of n2 remained the same after the value of n1 being changed. Their
thoughts present the misunderstanding of the assignment between two objects, and
are instances of negative transfer from C to Java.
In the third category, ”No Method Knowledge”, 12 responses were included, such

as ”51 51”, ”51 51 (I do not know what ”.agga” does)”, ”prints out two objects n1
and n2”, ”n1=51 n2=”, ”Nothing, because the functions are not called”. Students
with ”51 51” and ”51 51 (I do not know what ”.agga” does)” did not know what
”.agga” means and only wrote the first printed number and the last printed number.
If the students had learned the basic knowledge related to methods in Java, they
would not have doubts about ”.agga”. Students who wrote ”prints out two objects
n1 and n2” as the answer seemed to skip the line of code calling the method. They
were likely not to understand this line similar to the students with the former two
answers. Besides, they did not know that ”n1.num” means accessing the ”num”
attribute of the object n1. ”n1=51 n2=” was written by students who might also
skip the assignment because they could not comprehend it. Though the format of
output was inconsistent with the actual result, the first output number was correct.
Whereas, the second output of this student was missing. This shows that he or
she had trouble from the line with the ”agga” method. This student thought there
was something going on with ”n1.agga()”, however, the last output was built upon
this result and was hard to guess without knowing the meaning of the last line.
”Nothing, because the functions are not called” shows that this student did not know
”.agga” is used to access the method created above. Since the student called the
methods in Java ”functions”, it is very possible that this student had background in
C programming. Since methods is a unique feature of Java, this category of answers
was assumed to be answers of students with C programming experience. The statics
in Table 5.7 supports this assumption, because there are 8 out of 12 students with
only knowledge in C. There are other 3 students with knowledge in C and Python.
The next category is ”Method Misconception”. One student wrote ”The code is

incorrect, objects Robot don’t have an attribute agga”. This student considered the
class Robot as an object and the method ”agga” as an attribute by mistake. The
thought shows that this student had only knowledge in C programming, which is
verified by the statistical result. The student might have heard of some features in
Java, but have not learned it systematically.
The ”Code Execution Misconception” category refers to the misconception in code

execution order. It contains responses such as ”53”, ”53 53”, ”num+2 51 51”, ”53
55”, and ”53 51”. The answers whose first number is 53 are obvious examples of
executing the code in a wrong order. The reason for this is that the first printed
number is supposed to be the original number initializing the object n1 (51). 53 is the
value of ”num” of n1 after executing the method that took place after n1.num was
printed. However, in the snippet, the creation of ”agga” method was written before
the main method, which might cause students to think that it is executed before
the main method. Through analyzing the answer, ”num+2 51 51”, the thought of
this student is clearly to see. ”num+2” is the return value of ”agga” method. ”51”

64

5 Results

is the value of n1.num. After assigning the value of n1 to n2, the value of n2.num
becomes ”51”. So this student also have misunderstanding about the code execution
process. Since the code execution order is a basic knowledge in programming, this
category presents the lack of programming experience of novices and is not related
to a specific PL.
In the sixth category, ”Assignment Not Noticed”, 3 responses were classified into

it. These students all had the same answer: ”51 53 22”. They understood correctly
about ”n1.num” and the use of the method. Whereas, the last printed number
should at least be 51 as a result of the assignment. 22 showed that these students
did not notice there is one assignment before calling the method. Maybe they were
not careful enough.
In the last category, ”Other”, there are 23 answers included. Among them, 17

students said that they did not know the answer, and they had either C programming
background or no programming background. This presents the difficulty met by
them when comprehending the snippet. Except for these answers, there are answers
like ”Robot n1=new Robot(”Nori”, 51); Robot n2=new Robot(”Alen”, 22);”, ”0”,
”22 53 51”, and ”51 22 53”. The student whose answer is printing the first two lines
of code inside the main method might not understand the whole snippet. ”22 53
51” and ”51 22 53” are two confusing answers. The student with the second answer
might have doubts in the code execution order as well as the assignment. The first
answer is similar to the answers in ”Assignment Misconception” group, however, the
reason why the first printed number was 22 remained unknown unfortunately. Why
a student wrote ”0” as the answer was unknown, but a possible explanation is that
this student had huge difficulty understanding this snippet and decided to give up.
Looking at all the responses of this question in general, they demonstrate the

difficulty that novices with C programming experience had during comprehending
snippets containing FCC-type concepts. This situation supports the hypothesis 2
(H2) and 4 (H4). For novices with programming knowledge in Python, their answers
were expected to be mostly correct due to TCC-type of concepts. Even though in
the correct answer category there are 6 responses from participants with Python
background, none of them is from participants with only Python background.

5.3.7 Categories of Question 7 - Memory Allocation

Table 5.8 gives a demonstration of results of the seventh question. There are 9
categories for this question. One thing should be mentioned is that the number of
valid answers decreased from this question. After removing blank responses, there
are 61 of them left. The category containing the highest number of answers is ”Lack
of Programming Knowledge” (30 out of 61 responses).

5.3.7.1 Review of Question

In the snippet of this question (see at Figure 4.7), a method named ”twoSum” was
created before the main method. It took an array and a integer as parameters, and

65

5 Results

returned an array as the return value. In the main method, ”twoSum” was called to
find two numbers in an array that add up to the target integer. The target number
in this case is 11, and the array is "[1, 2, 3, 4, 5, 6]". Obviously, the only two
number in the array that fulfill the requirement are 5 and 6. The array returned
by ”twoSum” consisted of the indexes of the found number, so "[4, 5]" would be
returned. The two lines of ”println” method at the end, printed 4 and 5 separately.
The Java concepts in this snippet are presented in "nums.length" and "new

int[]i, j". ".length" is a technique used to access the length of an array in
Java. However, there is no similar things in C. In python, the way of getting the
length of an array is "len()". This concept is unknown by the participants, whereas,
it was not the main focus of this question. "new int[]i, j" allocates a space in
memory for this array. Whereas, no keyword ”new” is included in C and Python. In
C, ”malloc” function is often used to manage allocation of memory manually, which
is different from and more complicated than Java. In Python, although there is
automatic memory management similar to Java, the keyword ”new” does not have
a match.
As a consequence, the concepts contained in this snippet are in ATCC category

for both C and Python, and no transfer was expected to be observed from responses
of participants.

5.3.7.2 Categories Elaboration

The first category shows the correct answers. There are only 2 students (3.3%)
came up with the correct answer ”4 5”. One of them had background in Java
programming, and another had background in C and Python.
The second category is named ”Array Index Misconception”. The answer included

in this category is ”3 4”. Students with this answer might understand the whole
snippet, but made mistakes when dealing with the index of arrays. One of these
two student wrote clearly what every step of the code snippet did, and only the
result was incorrect. This indicates that these two students could have answered
the question correctly.
The third category, ”Array Index and Elements Confusion”, consists of ”5 6” and

”6 5”. These two answers are the numbers themselves that met the requirement.
However, the correct answer should be the index of these numbers. Hence, the
students in this group had a misconception about the indexes and elements of arrays,
but they understood the snippet.
The next category is ”For-loop Misconception”. Students whose answers are in

this category had problems understanding the nesting of for-loops. Their answers
are ”1 1”, ”0 0”, ”6 6”, and ”error”. These answers reveal that students did not
understand the for-loops inside the ”twoSum” method, because the second condi-
tion of the for-loop made sure that variable j would not reach the same value as
variable i ("int j = i + 1; j < n; ++j"). The student with answer ”6 6” might
understand the snippet better than the remaining students in this group.

66

5 Results

C
o
rr
e
ct

A
n
-

sw
e
rs

A
rr
a
y

In
d
e
x

M
is
co

n
-

ce
p
ti
o
n

A
rr
a
y

In
-

d
e
x

a
n
d

E
le
m
e
n
ts

C
o
n
fu
-

si
o
n

F
o
r-

lo
o
p

M
is
co

n
-

ce
p
ti
o
n

M
e
th

o
d

A
cc

e
ss

K
n
o
w
l-

e
d
g
e

M
is
si
n
g

A
rr
a
y
s
a
s

P
a
ra

m
-

e
te
r

o
f

M
e
th

o
d

M
is
co

n
-

ce
p
ti
o
n

L
a
ck

o
f
P
ro

-
g
ra

m
-

m
in
g

K
n
o
w
l-

e
d
g
e

+
+
i
M

is
-

u
n
d
e
r-

st
a
n
d
in
g

O
th

e
r

S
u
m

J
av
a

1
0

0
0

0
0

0
0

0
1

C
0

0
4

2
2

4
17

1
3

33
P
y
th
on

0
0

0
0

0
0

0
0

1
1

J
&

C
0

0
1

0
0

0
0

0
1

2
C

&
P

1
0

0
3

1
0

7
0

1
13

J
&

P
0

1
0

0
0

0
0

0
0

1
J
&
C
&
P

0
0

0
0

0
0

1
0

0
1

N
on

e
0

1
0

0
0

0
5

0
3

9
S
u
m

2
2

5
5

3
4

30
1

9
61

Table 5.8: Categorization of Results in Question 7 - Memory Allocation

67

5 Results

The students who wrote ”1 1” and ”0 0” as the results might not know that these
two for-loops traversed the elements in the array nearly twice and not understand
that the goal was to find two numbers that met the demand. The student who
thought there was an error stated that the second loop ran to n instead of n-2
and caused an error. The thought shows that this student did not understand the
condition of the second loop as well, however, the student also explained that the
first loop ran to n-1 and the second loop started 1 later, which was correct. This
situation can be explained that the student did not grasp the learned programming
knowledge.
The fifth category is named ”Method Access Knowledge Missing”, and consists

of 3 responses that have the same answer: ”1 2”. The first line that printed the
result is "System.out.println(s1.twoSum(numbers, target1)[0]);". In it, s1
was the name of the object of the class Solution. In the parameter of ”println”
method, the method ”twoSum” was called, and the array named ”numbers” and
target number were passed to the method. Then the first element of the returned
array was printed, which should be 4. For students in this group, they had trouble
understanding the access of the method ”twoSum” and printed the first and second
element of the array ”numbers” instead.
In the ”Arrays as Parameter of Method Misconception” category, responses were

”no output”, ”No output because arrays cannot be passed without a length to a
function (in C anyway).”, ”error because n is not defined”, and ”There could be a
problem because the first for loop starts always with 0, I think it should start with
the number in the array instead”. The common part of these answers is that they all
express a thought of this snippet having an error passing the array as a parameter
of the method. The first two students stated that there would be no output, and the
second student mentioned the length of the array was missing. The second student
also stated that this conclusion was derived from the knowledge in C programming,
but the misunderstanding was mostly caused by not knowing the use of ”.length” in
Java which was not the focus of this question. The third student said that there was
an error since n was not defined. This problem is also a result of missing knowledge
of accessing the length attribute of an array in Java, because the declaration of n
("int n = nums.length;") was in the first line of the ”twoSum” method. The last
student stated that the loop should start with the number in the array instead of 0.
This student seemed not notice that the array was passed as the parameter and the
variable i and j in the nesting loop stood for just indexes of the array.
The seventh category is named ”Lack of Programming Knowledge” because the

students whose answer was classified in this group all said that they did not know
the answer, or had no idea about the solution. These results demonstrate that new
programming knowledge of Java was missed by students, and they had no experience
of knowledge transfer during code comprehension.
The eighth category is ”++i Misunderstanding”. Only one student’s response

was included in this category. The student described that ++i and ++j were wrong
in their notation, and the new string should have i = 5 and j = 6. Although i++
is often used in C programming, ++i is also allowed in the syntax of C. In the

68

5 Results

expression i++, the current value of i is used, and then i is incremented. In the
expression ++i, i is incremented first, and then the updated value of i is used. So
i++ is post-increment, and ++i is pre-increment. But the description from the
student indicated that he or she understood what the snippet was doing.
The last category is ”Other” consisting of 9 responses. These responses were

unfortunately hard to understand without asking students further questions. One
answer included in this category is ”123” which is the first three number of the
array, but it is not related to the function of the snippet. Another answer stated
that ”n=6 target=11”, which is correct but has nothing to do with the output.
One other answer contained string ”654321 11” for twice. These answers could only
demonstrate that the students who wrote these answers did not understand the
snippet even if they did not write ”I do not know” directly.
All the mistakes participants met in this question do not have special relationship

to any PL, instead, they are all because of lacking knowledge in Java or lacking pro-
gramming experience. Besides, the category with the highest number of responses is
”Lack of Programming Knowledge”, which supports the opinion again. Hence, the
statistical results present that participants had no transfer during comprehending
the snippet. This case contributes to the possibility of accepting the hypothesis 3
(H3).

5.3.8 Categories of Question 8 - String Concatenation

Table 5.9 presented the categories created for the eighth question. There are 5 cate-

Correct
An-
swers

”+”
Concate-
nation
Knowl-
edge
Missing

Strings
and
Numbers
Con-
nection
Miscon-
ception

“+3”
Mis-
under-
stand-
ing

Other Sum

Java 1 0 0 0 0 1
C 12 1 9 10 3 35
Python 2 0 2 0 0 4
J & C 0 0 2 0 1 3
C & P 6 0 6 0 1 13
J & P 1 0 0 0 0 1
J&C&P 1 0 0 0 0 1
None 3 0 2 2 1 8
Sum 26 1 21 12 6 66

Table 5.9: Categorization of Results in Question 8 - String Concatenation

gories in the Table, and 26 out of 66 responses (39.4%) are correct. Other categories

69

5 Results

are ”No Method Knowledge”, ”String and Number Connection Misconception”, ”+3
Misunderstanding”, and ”Other”.

5.3.8.1 Review of Question

The snippet of this question is simple. The first line printed "hello" + "there"

using the ”println” method. The second printed "exec" + 3. In Java, the addition
symbol can be used to concatenate two strings, or a string and a number. Therefore,
the actual results of running this snippet are "hellothere" and "exec3".
Whereas, there is no such usage of the addition symbol in C programming. One

of the common methods to connect two strings is using ”strcat()” function. If
similar snippet written in C PL is executed, compiling error will be produced. In
Python, using the addition symbol to concatenate two strings is allowed, and only
concatenation of strings is available. This means that connecting ”exec” to the
number 3 will lead to an error.
Consequently, in both C and Python, the concept of using ”+” in this case belongs

to the FCC category. Negative transfer is assumed to happen during participants’
comprehension phase.

5.3.8.2 Categories Elaboration

In the ”Correct Answers” category, there are 26 responses. The correct rate of
participants with only Python background is 50%, and 34.3% for only C-background
participants. For Python participants, it is easier to correctly solve the first problem.
Hence, they had high correct rate.
The category named ”+ Concatenation Knowledge Missing” consists of one an-

swer that said there would be an error. This is consistent with the situation in C
programming, therefore, it is believed that the student who wrote this answer have
learned programming knowledge in C. The statistical result proves this assumption.
The third category, ”Strings and Numbers Connection Misconception”, contains

21 responses. The content of responses is different from each other, such as ”hel-
lothere no output”, ”hellothere error”, ”Will not compile, as 3 is not a string”, ”The
program crashes because System.out.println cannot take strings + integers in its
input”, ”Error Because we can not add numbers to strings”, and ”hello there Do
not know what the second one does (maybe error)”. Most answers contained the
correct answer for the first output, but they all showed doubts on the second line
of code when a number was connected to a string. Some students thought there
would be no output, while some of them believed that there would be an error,
the program would not compile, or it would crash. There was one student thinking
that numbers could not be added to strings in calculations, which is correct, but it
was not the meaning of the addition symbol here. One student said that ”tring +
integers” cannot be the input for ”println” method, which is incorrect. The opin-
ion presented a misunderstanding of the ”println” method, but it also showed the
misconception of connecting a number to a string. There were also students stating

70

5 Results

that they did not know what the second line of code did, and a guess of the result
was made saying that there would be an error. In general, students whose answers
are in this category all expressed their doubts about the second line of code, and
experienced negative transfer during comprehension.
The fourth category is named ”+3 Misunderstanding”. The answers included

in this category are ”hellothere exe”, ”hellothere exec”, and ”hellothere c”. The
students in this group did not have problem with the first output, and seemed to
think that ”+3” was related to printing a certain position of the string “exec”.
Therefore, string ”exec” with different lengths were written as the output. Even
though no one in this group answered the first output wrong, they were still believed
to have background in C. The reason for this is that according to the categories of
the answers to the previous questions, students with a C language background are
more inclined to process strings in units of each character. The misunderstanding
of these students also reflects the negative transfer they experienced.
The last category is ”Other”, and contained 6 responses. 2 students in this group

said that they did not know the answer, and 2 students gave up answering the
question. One student wrote ”hellothere3”, which is hard to interpret. Perhaps it
was due to lack of programming knowledge, but more analysis needs to be done. One
student described that the one in each parenthesis was reproduced. This student is
correct in a way, but without explanation of the answer, it is not clear whether or
not the student understood the snippet.
The answers to this question are mostly examples of negative transfer (60.6%).

They support the opinion in hypothesis 2 (H2) and hypothesis 4 (H4) that novices
will experience negative transfer when comprehending Java snippets containing
FCC-type concepts, and it is hard to transfer from C to Java for novices.

5.3.9 Categories of Question 9 - Array Length

The categories of results of the ninth question is demonstrated in Table 5.10. The
number of valid responses dropped in this question with 47 not blank ones. There
are 6 categories. The number of correct answers is 15, which comprises 31.9% of the
total answers.

5.3.9.1 Review of Question

The key concept in this snippet was the usage of ”.length” to access the length
attribute of an array. In the snippet (see at Figure 4.9), firstly, the main method was
declared. Inside the main method, a two-dimensional (2D) array was declared and
initialized. Then, this array was printed using a method named ”printArr1”. After
the main method, the method, ”printArr1”, was created. It leveraged two nested
for-loop to traverse through all elements in the array, and to print the elements
row by row. The elements in one row were separated from each other by blank
spaces. After running the snippet the output should be exact the same as this array:

71

5 Results

Correct
An-
swers

”.length”
Knowl-
edge
Missing

For-Loop
Nesting
Miscon-
ception

”+” Con-
nection
Knowl-
edge
Missing

Lack of
Program-
ming
Knowl-
edge

Other Sum

Java 1 0 0 0 0 0 1
C 5 0 4 2 10 3 24
Python 1 0 1 0 0 0 2
J & C 0 0 0 0 0 1 1
C & P 4 2 2 0 1 1 10
J & P 1 0 0 0 0 0 1
J&C&P 1 0 0 0 0 0 1
None 2 0 1 0 3 1 7
Sum 15 2 8 2 14 6 47

Table 5.10: Categorization of Results in Question 9 - Array Length

1 2 3
4 5 6
7 8 9

. The approach of getting the length of the array used in the Java snippet

is ”.length”. The condition of the first for-loop was "(int x=0; x < arr.length;

x++)", and ”arr” was the name of the 2D array. According to this condition, the
value of x would increase from 0 to 2, and went through all the rows of the array.
The condition of the second for-loop was "(int y=0; y < arr[x].length; y++)".
This loop traversed to each element in one row of the array.
In C, the for-loop has similar syntax as in Java. However, for the usage of

”.length”, there is no such keyword existing. The traditional way of accessing the
length of an unknown array in C is to go through each element in an array and count
the number. Another common approach is to use the ”sizeof” operator along with
the size of an individual element to calculate the length: "length = sizeof(arr)

/ sizeof(arr[0]);". The only way that makes ”.length” work is to have a data
structure that contains a member named ”length” in C. The example of this method
can be found in section 4.3.2. After having the data structure, the value of length can
be accessed using ”.” operator or "->" operator. The instance of using this method
can be found at Figure 4.11. "structOne.length" or "ptr->length" are used.
In this case, the the snippet could have similar syntax in C and Java. Therefore,
this concept belongs to FCC category. Besides, to students with C programming
background, especially to students with only C programming background, negative
transfer was more possible to happen during comprehension.
Python has simpler way of getting the length attribute, whereas, length keyword

still does not exist. Instead, ”len()” function is used: "length = len(list example)".
The parameter of ”len()” function is named ”list example”, which is the equivalent
of an array in Python. Comparing to the ways of getting the length attribute in

72

5 Results

C, a totally different function is used in Python. Thus, this concept is in ATCC
category.

5.3.9.2 Categories Elaboration

In the ”Correct Answers” category, there are still 5 answers from students with
only C programming knowledge, and the correct rate for students with the same
background is 20.8%. This showed the difficulty they met in this question, and
proved the higher probability to accept the hypothesis 2 (H2). For students with
only Python background, the correct rate is 50%, however, there were only two
students in this group.
In the ”.length Knowledge Missing category”, two responses are included, which

were both provided by students having learned C and Python programming. One
of them wrote the correct answer first, but expressed the doubt about the answer
by saying that maybe there would be an error because of ”arr[x].length” might
not be possible in Java. The thought presented that the student did not have
related knowledge in Java, but could make a correct guess about the answer. The
other student said that there might be problem if arr.length was not automatically
determined through the variable name. This answer also means that the student
did not have the knowledge of using ”.length”.
The third category is named ”For-loop Nesting Misconception”. Answers to this

type vary greatly. One student wrote
0 1
1 5
2 9

. Two students wrote ”1 5 9”. These

two kinds of answers contain similar number, however, the second answer printed
the numbers on the diagonal of the array. In the first answer, no regular pattern
was found, which indicates that this student might not understand the nesting loop
at all. One student’s solution was ”1,2,3 4,5,6” which only contained the first two
rows of the array, and it could be considered that the student did not understand
clearly about the nesting of the loop. The same problem was also found on a student

printed the array for twice, a student whose result was
1 4 7
2 5 8
3 6 9

, and a student with

answer ”11 12 13 24 25 26 37 38 39”. The knowledge of nesting of for-loops is not
related to any specific PL, and was the result of these students lacking programming
experience.
The fourth category, ”+ Connection Knowledge Missing”, is about the addition

symbol used in "System.out.print(arr[x][y]+" ")". The purpose of adding a
space after each element was to separate elements in the same row from each other.
There were problems found in students’ responses that they misunderstood the
purpose. One student wrote the solution as ”1+2+3+4+5”, and another student
explained the meaning of the snippet was to add each row and print out the results
respectively. They thought that the addition symbol stood for printing out the sym-
bol or adding the numbers together. This situation is likely to be the consequence

73

5 Results

of lacking programming experience again.
The fifth category is named ”Lack Programming Knowledge”, and only responses

of ”I do not know” are included. These students met trouble during the code
comprehension and came up with nothing, which represented that they experienced
negative transfer or no transfer. And this case supports the hypothesis 2 and 3.
Most students in this group had C programming knowledge, which made it more
possible to accept the hypothesis 4.
The last category is ”Other”. There are 6 answers classified into it. Two stu-

dents clearly stated that they aborted the question. One student said that this
question was not finished, and the next question was not finished as well. One
student answered 5 as the result, which did not make sense. It is found that the
tenth question was also replied with 5 by the same student. Hence, it is possible
that the student also gave up the question. One student with no programming
background wrote that the output would be ”{1,2,3},{4,5,6},{7,8,9}” which was
the same as the initialization value of array arr in the snippet: "int[][] arr =

{{1,2,3},{4,5,6},{7,8,9}};". This student might not understand the snippet,
however, the answer was correct in a way. Thus, more analysis needs to be done.
A student expressed that the code could not work because the object arr and the
attribute length were not created. The student might think that the array was an
object, and the length was an attribute of it that should be declared before use. The
knowledge background of this student is only C, so further analysis is required.
Looking at the results of this question as a whole, the 68.1% error rate proves

the point that students had difficulty finding the output of the snippet. Negative
transfer and no transfer were observed.

5.3.10 Categories of Question 10 - OOP Related

Table 5.11 presents the categories of the tenth question. In the table, there are
7 categories. Unfortunately, there was no responses from students who only had
Python programming knowledge. There were some responses from student having
knowledge in Python and other PLs, so that the analysis about students with Python
background still could be carried out.

5.3.10.1 Review of Question

This question was about the class and method concepts in Java. In the snippet
(see at Figure 4.12), three attributes of the class ”Student Info” (num, name, age)
were declared. Then the constructor method of the class was created. Afterwards,
four methods were created: ”getNum”, ”getName”, ”getAge”, and ”setAge”. By
understanding the meaning of these method names, their functionality can also be
revealed. Then, the main method was created. Inside the main method, an object
named ”student1” was created with the initialization value "("001","Max",25)".
The value of student1 was then printed by calling the methods created above:
”student1.getNum()”, ”student1.getName()”, ”student1.getAge()”. The next line

74

5 Results

of code changed the value of the age attribute of student1 by using the ”setAge”
method. After this, the modified age attribute of student1 object was printed again.
Then the result is ”001,Max,25 23”.
There is no OOP related concepts such as class and method in C programming.

Therefore, students with experience in C had no idea what class and method mean.
As a result, they could not think of learned knowledge when comprehending the
snippet, and no knowledge transfer would happen. They were more likely to make
mistakes and draw wrong assumptions. However, they might also answer the ques-
tion correctly and made correct guesses, because the names of methods and variables
made it easier to understand the meaning of them. No matter what the situation
was, the students experienced no transfer phase due to these concepts are classified
in ATCC category.
In Python, it supports OOP related concepts. Hence, the syntax of this Java

snippet would look similar in Python. The concepts are in TCC category. As a
result, students who had knowledge in Python programming would have no difficulty
answering them, and positive transfer should take place.

5.3.10.2 Categories Elaboration

The first category is ”Correct Answers”, and there were 17 students in this group.
The total correct rate is 38.7%. There were 7 students with only C programming
background, and their correct rate of this question is 29.2%. The number of stu-
dents who learned C programming is 12, so the correct rate for all the students
with C programming knowledge is 34.3%. The number of students with Python
knowledge is 11, and their correct rate is 54.5%. Comparing the result, the students
with Python background had more possibility to answer the question correctly, this
support the expectation that they would experience the positive transfer.
The second category is ”No Method Knowledge”, and includes three responses.

Two of the students wrote ”Max 25”, and the other student wrote ”25?”. They
all had some parts of the output missing. One explanation for this is that they
might not fully understand the way of accessing the method in Java. The first two
students only wrote the output of the first print method, which showed that they
might have trouble understanding the ”getNum()” and ”setAge()” mainly. The
problem they had with ”setAge()” led to not being able to wrote the last answer.
The third student added a question mark to the answer, which means that except
for the outputs the student did not write, the student was also not sure about the
answer given. The output of the snippet was related to methods created above, so
the result of this student demonstrated that he or she had almost no knowledge in
methods of Java. The students in this category were assumed to have programming
knowledge in C, and the statistics is consistent with the assumption. However, there
were 2 out of 3 students in this group had knowledge also in Python. The reason
why they did not have positive transfer requires further analysis.

75

5 Results

C
o
rr
e
ct

A
n
sw

e
rs

N
o

M
e
th

o
d

K
n
o
w
l-

e
d
g
e

In
co

rr
e
ct

O
u
tp

u
t

F
o
rm

a
t

”
th

is
”

K
n
o
w
l-

e
d
g
e

M
is
si
n
g

”
+
”

C
o
n
-

n
e
ct
io
n

K
n
o
w
le
d
g
e

M
is
si
n
g

L
a
ck

o
f

P
ro

g
ra

m
-

m
in
g

K
n
o
w
l-

e
d
g
e

O
th

e
r

S
u
m

J
av
a

1
0

0
0

0
0

0
1

C
7

1
4

0
0

8
4

24
P
y
th
on

0
0

0
0

0
0

0
0

J
&

C
0

0
0

0
0

0
1

1
C

&
P

4
2

0
0

1
1

1
9

J
&

P
1

0
0

0
0

0
0

1
J
&
C
&
P

1
0

0
0

0
0

0
1

N
on

e
3

0
0

1
0

2
1

7
S
u
m

17
3

4
1

1
11

7
44

Table 5.11: Categorization of Results in Question 10 - OOP Related

76

5 Results

The third category is named ”Incorrect Output Format”, because the responses
in this category were incorrect with the format of the output but contained correct
answer. The examples of responses are ”001 Max 25 001 Max 23” and ”23”. The
first answer is closer to the actual output than the second one. There were two
students who wrote this result. They might not notice that in the second print
method, only the age attributed was printed. The second response, however, only
consists of the second output of the snippet. The students with this answer maybe
could not focus on the questions anymore and missed the first print method, and the
correct answer of the second output had proved that they understood the snippet.
In general, students in this group could have answered the question successfully,
however, due to not being careful enough, they failed to solve the problem.
””this” Knowledge Missing” is the fourth category. There is only one student in

this group, and the result of this student was ”001 Max 25 25”. The first output
was correct, whereas, the age attribute in the second output remained the same as
the original value. This indicates that the student did not understand the method
”setAge”. The content of this method was similar to the others except for the usage
of ”this”. The keyword ”this” is a reference to the current instance of the object.
”this.age” refers to the instance variable ”age” of the current object. The purpose
of using it is to distinguish between the instance variable and the local variable with
the same name. Due to the student did not have programming background, the
knowledge of using the keyword was missing.
The fifth category, ””+” Connection Knowledge Missing”, consists of one answer

saying that there would be an error in the snippet. The student explained that at the
end of the first print method, "+student1.getAge()" was used to append an integer
to a string without casting it, which led to an error message. The misunderstanding
this student had is the same as the problem some students had in question 8. It is
allowed in Java to concatenate a number to a string. The student did not have the
related knowledge.
The next category is named ”Lack Programming Knowledge”. The responses

included in it are only ”I do not know”, or responses that expressed the same
meaning. The students had not learned Java programming yet when filling out the
questionnaire, thus, it was normal for them not having programming knowledge
in Java. They were assumed to have programming knowledge mostly in C only.
The result in the table presented that there were 8 students having C programming
experience, which is consistent with the assumption. There was no transfer observed
among these students.
The last category is ”Other”. Four students said that they gave up on this ques-

tion. One student said that the question was not finished. One other student
expressed that the time ran out. Since there was no time limitation of this ques-
tionnaire, the above mentioned students might all give up answering the question.
The one student left wrote that the snippet printed out three objects and 23. The
answer was correct in a way, because the actual result was that three values were
printed and followed by 23. The problem this response had was considering the
attributes of a class as objects, which was caused by missing of Java knowledge.

77

5 Results

The different mistakes students had in the answers prove that they had trouble
understanding the snippet and figuring out the output. This situation represents
that most students experienced no transfer and could not rely on the programming
knowledge they had acquired, which is the same as the expectation. For students
with Python programming experience, the correct rate was obviously higher, which
is an example of positive transfer generated by the TCC-type concepts in the snippet.

5.4 Individual Analysis

During analyzing the mistakes students had when answering the questions, there
were some special cases found. In this section, these special cases are introduced
and analyzed.

5.4.1 Special Case of Three Students

Through looking at all the data collected, there were 3 participants whose responses
were analyzed first. Two of them had background only in C programming and the
other participant had background in Java and Python programming.
The first student had programming background only in C, and the correct rate

was 0 which means that there was no correct answers. However, the student’s
poor performance in the questionnaire was not because he or she did not grasp
the programming knowledge in C. The problem was that the student always wrote
narrative sentences as the answers instead of the actual output, which made it hard
to decide whether or not the answer was correct. For example, in the first question,
the answer from this student was ”Wiedergabe von a” which stands for ”Playback of
a”. The actual printed variable was a, however, it was still not clear what the value
of a was. The second answer from this student looked similar ”Wiedergabe von var,
also Hallo” that means ”Playback of var, so hello”. The snippet worked to print the
value of var which was correct, and the string was ”hello” which was also correct.
However, the point was the number of the string printed, so it was not enough just
saying something like that. The answer of the eighth question was ”das je in der
Klammer stehende wird wiedergegeben” which means ”the one in each parenthesis is
reproduced”. This answer was mentioned earlier in the categorization analysis, and
it was in the category ”Other” in the eighth question. The same problem remained
in this answer: the student said that the content in each ”println” method would
be printed, however, there was no explanation whether or not the addition symbol
would also appear in the output. There were 5 questions that this student answered
”I do not know”, and these questions were all containing concepts in the category
FCC and ATCC, which represents that the student was a ideal participant with
only programming knowledge in C.
The second student also had programming background only in C. This was the

second time that the student participated in the questionnaire, and the student
explained that the questionnaire was not finished in the first time. In the data

78

5 Results

pre-processing stage, the first response of this participant was removed. In the
second response, thoughts analyzing what the snippet did could be found in almost
all answers. This shows that this student treated the questionnaire seriously, and
makes the answers from this student valuable for analysis. For instance, in the first
answer the student described what the third line did and the result according to
his or her knowledge in C: ”The decimal value would be lost and only 10 would be
outputted.” This was exactly the same result that was expected from students with
only C programming knowledge. The answer of the seventh question also showed
typical thoughts influenced by C programming knowledge: ”No output because
arrays cannot be passed without a length to a function (in C anyway).” It was
anticipated that students with C background would had trouble understanding the
part about accessing the length of an array. Whereas, in the answer of question 6
revealed that this student might have touched some basic concept in Java before.
The student said that Robot in this snippet was an object, and it did not have the
attribute agga. The explanation presented that the student had misunderstanding
about the object, method, and class in Java. Even though this snippet contained
FCC-type concepts, the focus was about the assignment rather than the method
agga. Hence, the basic knowledge in Java influenced the understanding or guessing
of this student toward the snippet. The answer of question 5 also reflected the
negative influence of basic Java knowledge. In this answer, the student said that
”The code is incorrect because no object of the defined class is ever created, so it’s
attributes cannot be accessed. Besides, no attributes are ever accessed (I’d say it
should be objectname.gen, not gen().” The student seemed to believe that there
should always be an object of a class created to enable the access of the attributes.
The method gen was considered as an attribute again.
The third student had programming background in both Java and Python. The

student also wrote detailed explanations about comprehension of the snippets. Be-
cause of the Java experience, the student had a high correct rate of 70% comparing
to other students. To this students all the concepts in snippets were in the TCC
category, therefore, the analysis was focused on the errors this student had. The
second question was answered incorrect by this student. The student only explained
the part inside the for-loop as if the last line was not seen. The answer to the fourth
question was incorrect, because the student thought that there were errors caused by
the word ”new” being used for both string ”lab” and ”==” being used to compare
the both strings. The explanation showed the student might only have basic Java
programming knowledge. The answer of question 7 was incorrect as well. However,
the statement of what the snippet did had no problem at all. In the end, the student
got to a conclusion that the output was ”3 4”, which was close to the actual answer
”4 5”. Whereas, the indexes of the numbers were counted wrong. This might be a
result of not being careful enough when counting the indexes.

79

5 Results

5.4.2 Confusion During Interpretation

There are some difficult parts to understand when comprehending the answers for
each category, and they are analyzed here.
In question 5, there was a student whose answer was classified into ”Method

Access Knowledge Missing” category. The student had both C and Python pro-
gramming knowledge, however, the result from this student was ”a”, which was
confusing. After checking all the responses of the student, only one correct answer
was found. This suggested that the student might not have good understanding
of the acquired knowledge. One student in ”Other” group of question 8 wrote
”hellothere3” which looked like a combination of both outputs. The student had
no programming knowledge, and the correct rate was 20%. Therefore, the reason
why this student came up with this answer was not having enough programming
experience. In the ”Other” category of question 9, there was a student with no pro-
gramming background writing ”1,2,3,4,5,6,7,8,9” as the answer. The correct rate of
this student was 10%, which proved that he or she did not have much experience
in programming. Hence, maybe for the question 9, the student was just thinking
that the snippet printed something of the array and copied the value of the array
as the result. In question 10, there were two students in ”No Method Knowledge”
category answering the question as ”Max 25”. They both had experience in Python
programming, thus, they should not have difficulty understanding the concepts in
this question. Nevertheless, their answer was incorrect. Through looking at other
results of these students, one of them had 50% correct answers, and another had
10% correct answers. The second student with lower correct rate might not have a
good grasp of the learned knowledge, and the mistake was caused probably due to
not fully understanding the snippet. As for the student with higher correct rate, he
answered the question 5 to question 9 correctly, but the outputs of question 1 to
question 4 and question 10 were wrong. This situation might show that the student
did not take the questionnaire very seriously, because it did not make sense that
this student had no trouble understanding more difficult snippets while failed to
comprehend the easy ones.
As a conclusion for this chapter, the results collected through the questionnaire

were analyzed in mainly two ways. In the next chapter, discussion over the results
will be carried out.

80

6 Discussion

In the last chapter, the responses of the questionnaire was presented generally in
ten bar charts. The classification of different types of mistakes in the responses
was demonstrated in ten tables. In this chapter, the discussion over the result
of the analysis is done. In section 6.1, the assessment of results is introduced,
which includes the discussion about the transfer process observed, some special cases
found, and the answers to the research question. In section 6.2, threat to validity
is discussed from the construct validity, internal validity, and external validity. In
section 6.3, the thesis is compared to some related work.

6.1 Assessment of Results

In this section, assessment of results of the questionnaire is talked about and re-
lated to the hypotheses. The main point of carrying out the research is to explore
and answer the research question. Before approaching to the discussion about the
research question, it is necessary to take a look again at the results first.

6.1.1 Transfer Process

In this thesis, the participants of the questionnaire had various programming experi-
ence as shown in the Table 5.1. To demonstrate the assessment of the results, three
broad types of programming backgrounds are considered: C, Python and Java. The
transfer processes of transferring from C to Java, and Python to Java are the main
focus of this thesis.

6.1.1.1 Positive Transfer

The hypotheses of the thesis can be found at Section 4.1.3. The first hypothesis is
about concepts in TCC category and is related to positive transfer:

• H1: For novice programmers having different programming knowl-
edge, positive transfer is expected to be observed when they com-
prehend Java code snippets containing TCC of their learned PL.

Since the snippets in the questionnaire were written using Java, the concepts con-
tained in them are all in TCC category comparing to Java itself. Therefore, to
students with Java experience, only positive transfer was expected to be observed.
The number of participants who have Java experience is 7 out of 91, and there was

81

6 Discussion

only one student who had only experience with programming in Java. According to
the analysis of all the responses, most participants only had very basic programming
knowledge in Java that they did not even answer the simple questions correctly. The
student with only Java background answered all the questions correctly, which indi-
cates that this student experienced positive transfer during the code comprehension.
There is one other student with Java background had 70% of correctness, which also
means that the student faced mainly positive transfer. However, with the data of
two students, we cannot say that we can accept the H1 in this case.
Comparing to C PL, there are three questions consisted of concepts in TCC

category: Question 2, Question 3, and Question 5. Among them, Question 3 and
5 have a correct rate of students with only C background at 64.3% and 73.8%
respectively. The correct rates of students having C programming experience is
71.2% and 75.4% for Question 3 and 5. These results indicate that most students
with C background only or combined with knowledge in other languages experienced
positive transfer during Java code comprehension, and proves that we can accept
the H1 in this situation.
However, as for Question 2, there were only 16.7% of the students who had only

programming experience in C answering it correctly. For all students with C lan-
guage experience, the correct rate is 18.2%. The snippet contained in this question
was not complicated. Shown in Figure 4.2, the snippet included a for-loop, and
printed the value of a string some times inside the loop and one time outside the
loop. Students with only C programming knowledge should be able to understand
the for-loop and guess accurately the meaning of ”println” method. Whereas, the
actual result showed that they faced difficulty during the comprehension. In Table
5.3, there are 38.1% of the students with only C background having the mistake
”Variable Scope Misconception”, and 33.3% of them having problem in ”Code Ex-
ecution”. This means that 38.1% of the students wrote three ”Hello” strings as
the answer and did not realize there should be an error when printing the variable
declared inside the loop. This misconception is not caused by programming knowl-
edge transfer because the students wrote ”Hello” string as the output that showed
they guessed successfully the function of ”println” method. Besides, the rest part
of this snippet shared the same syntax with functionally equivalent C snippet, and
the concept of variable scope is taught in basic C programming courses. Therefore,
we could say that ”Variable Scope Misconception” was caused by lack of program-
ming experience. There are 33.3% of students with only C programming experience
having problem with ”Code Execution”. They thought that there would still be
output when compiling error was detected during execution. This is also a basic
knowledge that a student would acquire if he or she tried to execute code in a IDE.
Hence, we could also say that this misconception was caused by lack of programming
experience.
To sum up, the results of Question 3 and Question 5 indicate that we can accept

H1 in the case when participants are novices with programming knowledge in C.
Whereas, the results of Question 2 revealed that due to lack of programming knowl-
edge, positive transfer may not appear as expected in code comprehension phase of

82

6 Discussion

novices.
The snippets in Question 3, Question 5, Question 6, and Question 10 contain

concepts in TCC category comparing to Python. In Question 3, 75% of the answers
from students with only Python background were correct, and 80% of the answers
from students with Python programming experience were correct. With this data,
we could say that most students experienced positive transfer during solving the
third question. Under this circumstance, we can accept H1. In Question 5, students
with only Python programming experience all answered it correctly, and the correct
rate is 100%. The correct rate of students with Python experience is 83.3%. In
this situation, we could also say that positive transfer was observed during the code
comprehension of novices, and we can accept H1.
In Question 6, the correct rate of students who had only programming experi-

ence in Python is 0 because there were no one who answered it correctly, and the
correct rate of the students with Python experience is 30%. This result is incon-
sistent with the expectation. Therefore, more analysis was done to find out the
explanation: The snippet of this question can be seen at Figure 4.6. The concept of
classes, methods, and objects were included in it. For Python background students,
the common mistakes were ”Assignment Misconception”, ”No Method Knowledge”,
and ”Assignment Not Noticed”. The first mistake demonstrated that they believed
”n2=n1” copied the value of n1 to n2, and the value of n2 would not be effected
after the change of value of n1. However, this is what happens in C snippet, and the
students were thought to have background in C programming. For the 6 students
having this misconception (30% of all students with Python background), 4 of them
(66.7%) had background also in C. Hence, we could say that they were effected by
their knowledge in C programming. After checking the results of the rest 2 students
with only Python background, they both answered incorrectly the sixth and tenth
questions. These two questions involved classes and objects concepts, which are
related to OOP. They also said that they had medium experience programming in
Python. One possible explanation for their misconception is that they were more
familiar with procedural programming paradigm, and the concepts in this ques-
tion were new to them, which led to similar performances as students having C
background. The second and third mistakes of these students revealed that they
were influenced again by their knowledge in C, might lack programming knowledge,
or were not careful enough when reading the code. According to the discussion
about Question 6, we can not accept H1. Besides, it was found that students with
Python and other PL experience would be affected by knowledge of other languages,
which might lead to negative transfer when comprehending snippets contain TCC-
type concepts. Novices with only Python programming experience might not have
learned the OOP features of Python, and these features could be completely new to
them. Thus, these concepts could not always be categorized into TCC category for
novices.
Students with only Python programming experience all gave up on Question 10.

Fortunately, there were 11 students with Python experience submitted the responses,
and the correct rate for them is 54.5%. The correct rates for students with Java and

83

6 Discussion

Python background, and students with Java, C, and Python background, are both
100%. It means that for these students, positive transfer occurred, which was also
very likely caused by their Java programming background. For the students with C
and Python background, the correct rate is 44.4%, which is lower than the overall
correct rate of students with Python experience. The reason why this happened is
that the concepts contained in this question are in ATCC category for C, and the
students could be influenced by C knowledge.
In general, the results of question 10 imply that most students who had program-

ming experience in Python could understand the snippet successfully and experi-
enced positive transfer of knowledge. Besides, it shows that we could accept H1 in
this scenario.
Considering the cases of students with two different programming backgrounds

other than Java (C and Python), there were 5 out of 7 cases supporting the as-
sumption in H1. We could say that for these cases of the thesis, we could accept
the hypothesis 1. The observation presented that positive transfer was most often
observed when novices comprehending Java snippets containing concepts in TCC
category. However, due to lack of programming knowledge, positive transfer may
not appear as expected for novices. Moreover, OOP concepts in Python may not
be classified in TCC category for those students who only learned procedural pro-
gramming in Python.

6.1.1.2 Negative Transfer

The second hypothesis is:

• H2: For novice programmers having different programming knowl-
edge, negative transfer is expected to be observed when they com-
prehend Java code snippets containing FCC of their learned PL.

It describes the connection between FCC-type concepts and negative transfer. The
analysis was done on the results of C and Python background students. The Ques-
tion 1, 4, 6, 8 and 9 consisted of FCC-type concepts comparing to C, and comparing
to Python, the FCC Questions are 1, 2, 4 and 8.
According to the results of Question 1, the correct rate for students with only C

programming experience is 11.9%. The correct rate for students who had knowledge
in C programming is 13.6%. It revealed that most C background students faced diffi-
culty during the comprehension. The type of mistake that was influenced by novices’
experience in C is ”Type Incompatibility”. In this category, 69.6% of the students
had C programming experience. This information infers that these students experi-
enced negative transfer in the comprehension, and supports the Hypothesis 2. The
correct rate of Question 4 for students with only C experience is 4.8%, and for stu-
dents with C experience, it is 6.1%. We could find that students with background in
C had much trouble understanding the snippet. The categories of mistake: ”String
Comparison Unavailable” and ”Value Comparison” were assumed to be caused by
the negative transfer of knowledge in C programming. The answers of 59.5% of

84

6 Discussion

the students who had only C background were classified in these categories, which
means that they did have negative transfer and we could accept H2 in this case. For
the responses of Question 6, the correct rate of only C background students is 7.3%,
and the correct rate of students who had learned C is 14.8%. ”Assignment Miscon-
ception”, ”No Method Knowledge”, ”Method Misconception” and ”I do not know”
were assumed to be common mistakes made by C students. From the results, among
the students with only C background, 76.2% of them had the above mentioned mis-
takes. This finding indicates that we can accept H2 in this case. The correct rates of
results of Question 8 for students with only C programming experience and students
with C and other language experience are 34.3% and 36.5%, respectively. It shows
that more students had problems comprehending the snippet. ”+ Concatenation
Knowledge Missing”, ”Strings and Numbers Connection Misconception” and ”+3
Misunderstanding” were all believed to be problems related with knowledge in C
programming. 57.1% of students who only had C programming experience had mis-
takes in these categories. This result demonstrates that these students had negative
transfer during code comprehension, which means that we could accept H2 in this
situation. The results of Question 9 also supported the assumption in H2. Firstly,
the correct rates of students with only C experience and students with C experience
are 20.8% and 27.8%. The low correct rate implies the obstacles met by novices.
”.length Knowledge Missing category” and ”Lack Programming Knowledge” were
assumed to be two major problems that these students met, because they both indi-
cated that students did not have enough knowledge of the usage of ”.length” in Java
which is used differently in C. There were 41.7% of students with only C experience
faced problems in these category, which occupied more than half of the students
with wrong answers. It shows that more students faced difficulty when reading the
code snippet and experienced negative transfer, which proves that we can accept H2
in this circumstance.
According to the responses of these five questions, more students who had knowl-

edge in C programming had trouble understanding the Java snippets containing
concepts in FCC category. They were likely to go through a negative transfer phase.
Therefore, we can accept H2 considering the results from students with C program-
ming background.
There were four questions consisting of FCC-type concepts comparing to Python:

Question 1, 2, 4 and 8. Looking at the results of Question 1, the correct rate of
students who only had Python experience is 25%. The correct rate of students
who had Python and other PLs experience is 20%. The category ”Type Casting
Misconception” contained the largest number of students with Python background
(48% of the students). They answered the question with their knowledge of Python
and changed the type of the variable dynamically. This situation represents that they
were influenced by the Python knowledge, however, the knowledge was transferred
negatively and led to a wrong answer. It indicates that we can accept H2 in this
case. For Question 2, the correct rate of students with only Python experience
is 0, and the correct rate of students with Python experience is 12.0%. There
were 50% of the Python students who thought that the variable outside the loop

85

6 Discussion

could be printed. In Python, because of lexical scoping, it is achievable and correct.
However, there would be an error for this operation in Java. Hence, for these students
they understood the snippet based on Python knowledge and got wrong answer.
The situation presented the negative transfer between programming knowledge of
different PLs. We could accept H2 again in this case. In Question 4, none of
the students with only Python experience answered it correctly. Only 4% of the
students with Python experience answered it correctly. There were 56% of the
students with Python background made mistakes classified in ”Value Comparison”
category. They believed that only the value of these two strings would be compared,
and the result should stand for equality. However, the memory location of the
strings were compared in Java. The difference caused these students failing to
correctly understanding the Java snippet. Hence, negative transfer was observed in
this situation, and we could accept H2. In Question 8, 50% of the students who
had only Python experience answered it correctly, and the correct rate for students
who had Python experience is 52.6%. The rise in correct rate could be due to the
reduction in code snippet length and decrease in difficulty of snippet. Although
the correct rate increased, the average rate was still around 50%, which means that
almost half of the students with Python experience faced problems. Among all the
categories of mistakes, ”Strings and Numbers Connection Misconception” was most
commonly seen in Python students with a proportion of 42.1%. These students
thought that it was not allowed to concatenate a string with an integer in Java
because it leads to an error in Python. Their thoughts showed that they made a
guess using their current knowledge, whereas, the guess was incorrect. Therefore,
negative transfer was experienced by them, and we could accept H2 in this scenario.
In general, for students with Python background, they derived wrong assumptions

from their previous experience when reading Java snippets containing concepts in
FCC category, which represented a negative transfer. Hence, we can say that we
accept H2 in this case.

6.1.1.3 No Transfer

The Hypothesis 3 is related to the concepts in ATCC category:

• H3: For novice programmers having different programming knowl-
edge, no transfer is expected to be observed when they comprehend
Java code snippets containing ATCC of their learned PL.

The questions containing ATCC-type concepts are Question 7 and 10 for C, and
Question 7 and 9 for Python.
In Question 7, there was no students who had only programming experience in

C answering it correctly. The correct rate for students who had background in C is
2.0%. The performance of these students had already shown that they met much
difficulty understanding this snippet. The increase of difficulty and length of the
snippet contributed to this result at the same time. More than half (51.5%) of the
students with C background only and 51.0% of students with C knowledge said

86

6 Discussion

that they did not know the answer, which means that they did not find similar
information that they could use to help them comprehend the snippet and failed
to comprehend it. There were 10.2% of C background students having ”Array
Index and Elements Confusion” problem, and also 10.2% of them having ”For-loop
Misconception” problem. These two categories of mistakes were both related to
basic programming knowledge and were not connected to a specific PL. Hence, we
could say that these students could not find knowledge that had relationship with the
knowledge contained in this snippet, and could not use their previous programming
experience during comprehension, which demonstrates that there was no transfer
experienced by them. In this situation, we can accept H3. In Question 10, the
correct rate for students with C experience only (29.2%) increased comparing to
that of Question 7. For all the students with C experience, the correct rate is 34.4%.
The number of these students who said they did not know the answer was still the
largest among the numbers of students in all the categories. This situation also led
us to the same assumption as Question 7 that the students could not find similar
knowledge to implement. Therefore, no transfer was observed in the comprehension
phase, and we can accept H3 also in this case.
Considering the results of Question 7 and 10, the students with C programming

knowledge did not transfer their knowledge when understanding Java snippets con-
taining ATCC-type concepts. They did not know that there were similar features in
the language they had learned. For example, in Question 7, the keyword ”new” had
the same function of allocating a space for storing the variable. In Question 10, the
custom data structure in C could be similar to objects in Java. Without realizing
these, the learned knowledge was not helpful for the understanding of novices. No
transfer was observed, and we accept H3 in the case of students having C program-
ming background.
To analyze the Hypothesis 3 in Python scenario, the results of Question 7 and 9

were checked. For Question 7, the correct rate of students who had only Python
knowledge is 0. Unfortunately, there was only one student left in this background.
The answer of this student was about complaining the syntax of Java and the wish
of learning Python instead. We could tell from this answer that the student had dif-
ficulty learning Java, but it was not directly related to the snippet and the question.
The correct rate of students who had Python knowledge is 6.3%. It revealed that the
snippet was hard for them to understand. There were 50% of them saying that they
did not know the answer to this question. It demonstrates that they could not think
of something similar to the keyword ”new” in Python, even though Python also has
automatic memory management. Hence, the students did not do any transfer from
their owned knowledge to this new case, which makes it possible for us to accept
H3. In Question 9, there were two students who had only Python experience, and
one of them had the correct answer (50%). The other student had problem with
nesting loops which is not language specific. The answer of this student was ”1,2,3
4,5,6” which was the first two lines of the actual output, and it already showed that
this student knew the meaning of ”arr.length” was to access the length of an array.
Therefore, we could say that for these two students, their learned knowledge effected

87

6 Discussion

positively on their understanding. For the students who had learned Python, the
correct rate is 50%. Half of them could understand the snippet correctly, which
presented the positive effect of their previous programming knowledge. The mistake
category that contained the largest number of answers of these students is ”For-
Loop Nesting Misconception”. The students understood correctly that ”.length”
was about the length of the array, but made mistakes counting the length or had
trouble understanding the nesting of loops. In this case, we could observe transfer
during their comprehension. They seemed to notice that ”.length” was related to
the usage of ”len()” function in Python. The meaning of the word ”length” also
contributed to their understanding, but it belonged to the positive transfer from
natural language to Java snippets. Considering the mentioned aspects, we could
not accept H3 in this case since transfer was observed during the comprehension.
In general, we can only accept H3 in the case of Question 7. For students with

Python knowledge, no transfer was observed when they comprehending Java code
snippets in Question 7. Whereas, positive effects were observed in Question 9 com-
prehension, which suggests to reject H3.
Considering both conditions of C-background novices and Python-background

novices, we still could say that we accept H3 because the assumption in it was com-
monly observed. Novices usually will have no idea what knowledge could be similar
to the ATCC-type of concepts and could not rely on their previous programming
experience during Java code comprehension.

6.1.1.4 Transfer Related to Experience

To discuss the assumption in H4, the performance of all the students with knowledge
of C was considered. The Hypothesis 4 was stated as follows:

• H4: For novice programmers who have only programming knowl-
edge in C, the most frequently observed transfer is negative transfer
due to the differences in program paradigms and syntax.

The participants in this questionnaire were mainly C-background students (74.7%
of all participants). None of them answered all the questions correctly. Besides,
most of them had less than five correct answers. Their performance presented in
correctness indicates the difficulty they had during the code comprehension.
They had misconceptions in FCC-type of concepts. They noticed that the syntax

of the snippets in Java, the new PL, looked familiar to them, because it also ap-
peared in the PL they had learned. However, these concepts had different underlying
semantics, which resulted in misconceptions.
For the concepts in ATCC category, they could not think of any piece of knowledge

to help them understand them. The syntax looked unfamiliar, and the semantics
brought more trouble to them.
It was assumed that novices could comprehend successfully the concepts in TCC

category, because those concepts shared the same syntax in the new language (Java
in this case) and their learned PL (C in this case). In addition, the underlying

88

6 Discussion

semantics were also the same, which means that as long as they could understand
the snippet written in C, they had no problem understanding the new snippet written
in Java. Whereas, the results showed that novices may not be able to do this because
they might make mistakes in basic programming questions. For instance, they might
not understand the nesting of loops, the indexes of arrays, the condition of loops, and
so on. This indicates that they would make mistakes in their learned PL regarding
these basic knowledge, therefore, it was not possible for them to answer the question
correctly in the new PL.
As the complexity of snippets increasing, more keywords related to OOP appeared

in the snippets. This would also lead to confusion for novices who had not learned
the language, or for those who had never been exposed to OOP. For example, to
novices who had not learned OOP, ”public” and ”class” at the beginning of the
snippet could look odd, and the meaning of it was unknown to them. ”this” could
also be ambiguous. They learned the main function in C, whereas, ”public static void
main” could be confusing. In the responses of the questionnaire, it was found that
the number of novices saying ”I do not know” increased as the snippets becoming
more complex, which supports the assumption mentioned above.
In general, negative transfer was observed in novices comprehending snippets

containing FCC-type concepts most frequently. Sometimes, negative transfer was
also observed when they comprehending snippets containing TCC-type concepts.
Novices were more likely to answer the questions consisting ATCC-type concepts
incorrectly due to no transfer happening in this period.
Students in a programming class usually have very different experience levels [21],

the participants in this questionnaire were in the same situation. Hypothesis 5 sug-
gested that this phenomenon might lead to different performances during language
transferring.

• H5: Novice programmers who exposed to more PLs are more likely
to transfer their previous knowledge successfully to new scenarios.

In the previous discussion, we could find that the correct rates were usually higher
of students with different backgrounds than those of students with only C or only
Python background. Although the possibility for novices to transfer their knowledge
successfully to new scenarios was connected to the experience growth in the new PL
[28], we found that the performance of novices was similar when they had started
to learn more PLs. Learning more PLs demonstrates that novices need to read
and write more code snippets. They are likely to spend more time on learning
programming, and get more comfortable with coding. As the saying goes, practice
makes perfect. Novices who learned multiple PLs have more knowledge about at
least what codes in different PLs look like. Hence, when they comprehend another
new PL, they have more previous knowledge that they might rely on, which will
result in better performance in the Java questionnaire. Considering the increase in
actual correct rates, we can say that we accept H5.

89

6 Discussion

6.1.2 Answers to the Research Questions

In this section, the research questions are answered based on the results of the
questionnaire and the discussion about them. Firstly, we need to look at the research
questions again at Section 4.1.2:

• RQ1: ”What kind of transfer can be observed in novice program-
mers during Java code comprehension if they only have program-
ming knowledge in C?”

• RQ2: ”What kind of transfer can be observed in novice program-
mers during Java code comprehension if they have programming
knowledge in various programming languages?”

Then, with the responses and creation of the categories of results, we could answer
that positive transfer, negative transfer and no transfer were observed in novices
during Java code comprehension when they only have programming knowledge in
C. For questions containing TCC-type concepts, more students were able to answer
them correctly, which indicated that they had no trouble understanding the code
with their previous knowledge. Therefore, positive transfer was observed in their
behaviors. Some of them could not answer the question successfully, which meant
that they drew wrong conclusion from their programming experience. In this case,
negative transfer was observed.
For questions containing FCC-type concepts, more novices had wrong answers

that demonstrated the difficulty they had during the code comprehension, and neg-
ative transfer was observed. Similar to the TCC-type questions, there were also
students who comprehended and answered them correctly. In this case, positive
transfer was observed.
For questions containing ATCC-type concepts, no transfer, positive transfer, and

negative transfer were all observed. A lot of novices wrote ”I do not know”, which
presented the doubts they had. They could not link the snippet in the question
with their learned knowledge and could not make a guess about the output. Thus,
no transfer was experienced by them. Some of them could understand the snippet
correctly, while some of them made wrong guess. In their responses, the positive
transfer and negative transfer were observed separately.
For novice programmers who had programming knowledge in various PLs, posi-

tive, negative, and no transfer were also observed during Java code comprehension.
In our case, the backgrounds of novices can be found at Table 5.1.
The student who had only experience in Java answered all the questions correctly.

In fact, this student was the only one who successfully understood all the snippets.
Hence, for this student, only positive transfer was experienced. There were 4 stu-
dents who had only experience in Python, and there was no special findings in
their results. They experienced positive transfer, negative transfer, and no trans-
fer, and all said that they had medium level in Python programming. They made
mistakes in basic programming knowledge like nesting of loops, so during the code

90

6 Discussion

comprehension, they would also be influenced by lack of programming experience in
general.
Positive, negative, and no transfer were also observed in the students who had

programming experience in two or more than two PLs. It was found that for these
students, the chance of answering ”I do not know” was less than it of students
who only learned one PL. The correct rate of these students was also higher. Pos-
itive transfer was observed in these cases. Whereas, they still made mistakes or
replied ”I do not know” in some questions, which indicated the existence of negative
transfer and no transfer. Some of them made mistakes such as misconceptions on
indexes of arrays, which presented that they might also lack programming experi-
ence. Nevertheless, it was normal to find that they did not have enough experience
in programming, because they were still novice programmers.

6.1.3 Other Findings

In addition to the discussion mentioned above, there were other findings in the
results of the questionnaire.
We found that students with C programming background tend to treat strings or

arrays in their smallest unit. For example, in Question 2, there were students with C
programming experience writing the answer as ”Hel”. The output of the loop should
be two ”Hello” strings if the snippet did not contain compiling error. These students
thought that the loop worked to print the first three letters of the string. In Question
8, similar things happened again. There were students saying that the output of
the second method was ”exe” or ”c”. They believed that "println("exec"+3)"

stood for printing the first three letters, or the forth letter of the string ”exec”. The
reason why these C-background students thought in this way could be that there
are not as many built-in functions or simple features in C to use directly. C is often
considered a foundational or basic programming language. It is an essential language
for many programmers to learn, especially low-level programming or understanding
computer architecture. Therefore, programmers need to write a lot of functions in
C themselves. For novices, they might have learned the way to traverse a string or
array, which is usually using loops to go through each unit of the data structure.
Besides, after practicing this, they may have developed a fixed mindset to consider
these data structures in their smallest unit. When they looked at snippets written
in higher-level languages compared to C, they were still likely to think in the same
mindset intuitively.
We found another interesting phenomenon in answers of a student with only

knowledge in C. The student wrote many details in the answers to describe the way
of understanding the snippets. In some answers, ”in C” was clearly pointed out,
which demonstrated that the student was thinking based on C programming knowl-
edge. However, in some answers, OOP features were mentioned such as ”class”,
”object” and ”objectname.gen”. These words indicated that the student had some
impressions on Java or OOP. The student might also have learned about them.
However, instead of reducing the difficulty in understanding of Java snippets, these

91

6 Discussion

impressions influenced negatively on the accuracy of this student in answering the
questions. Nowadays, the information spreads fast, and the number of people learn-
ing programming has been increasing swiftly [32]. Novices could get new inputs from
the website or from their friends. This situation provides various ways for novices
to learn programming, and they could easily hear of some information about a PL
that they may learn in the future. Whereas, the case of this student told us that the
impression novices had on the PL could be incorrect, which might become obstacles
when they learn the PL.
There was one student who had experience in Java, C and Python among the par-

ticipants. This student should have a good performance according to the Hypothesis
and discussion, because more coding exercises were assumed to be done by this stu-
dent. However, the correct rate of this student was 40%. The last three questions
were answered correctly by this student, which showed that basic Java programming
knowledge was learned. Whereas, the replies of Question 1, 2 and 4 showed that
the student was influenced by the Python experience, and made mistakes in un-
derstanding the snippets which contained even more basic Java knowledge. Hence,
when a novice programmer has leaned different PLs but is not proficient in any of
them, he still faces problems comprehending snippets written in a new PL or one
of the learned PL. It is also possible to happen that different types of concepts in
these PLs would influence the code comprehension negatively.

6.2 Threat to Validity

In this chapter, threats to validity will be discussed, which are factors that may
compromise the accuracy, reliability, or generalizability of the findings. Three types
of threats to validity are introduced here: construct validity, internal validity, and
external validity.

6.2.1 Construct Validity

Construct validity refers to the extent to which the thesis accurately measured the
theoretical concepts it intended to measure. In this thesis, whether or not the
programming knowledge transfer could be measured by analysing the results of the
Java questionnaire needs to be checked.
In the questionnaire, each snippet in questions was designed to contain differ-

ent types of concepts, and the outputs of the snippet were required to be written
by participants. For participants taking part in the experiment in either online or
hand-written format, they could write anything they want in the input box. There-
fore, they could describe their thoughts about a snippet rather than only provide an
answer. By analyzing the answers from participants, where they met problems or
where they made mistakes in could be spotted. With this information, the transfer
of programming knowledge could be measured. However, not all of the participants
explained the reason why they came to this conclusion, the form of using a question-

92

6 Discussion

naire can be improved. For instance, individual interviews after the questionnaire
can be used to know more about the thoughts of participants. It is also possible to
decrease the number of questions and ask participants to describe what the snippet
is doing.
Despite these factors that could be improved, a questionnaire with code compre-

hension tasks can be used to observe the programming knowledge transfer happening
on participants.

6.2.2 Internal Validity

Threats to internal validity relate to the ability to draw accurate conclusions about
cause and effect relationships between the independent variable and the dependent
variable. The conclusions should not be influenced by other confounding factors as
much as possible.
In this thesis, there were some confounding factors. Firstly, the questionnaire only

contained simple snippets of Java programming, which means that it was possible
for some students to answer correctly the questions containing concepts in FCC and
ATCC type. However, considering the participants were still novices in programming
and had not learned Java yet, if the snippets were all complicated and long, they
would have trouble understanding those questions containing TCC concepts. In
order to mitigate the influence of this confounding factor and keep a balance in the
complexity of the snippets, short and longer snippets were all used.
Secondly, the participants had various abilities to code and had different numbers

of PLs learned, which also influenced the results. When designing the questionnaire,
the participants were expected to be students who had only learned C programming
or students who had only learned Python programming. Whereas, the actual partic-
ipants had various background. A few of then had learned Java before, while some
of them had learned Python and C, which made it hard to tell whether their results
were influenced by C knowledge or Python knowledge. To decrease the influence,
the responses of participants with different backgrounds were collected separately
when creating categories. Individual analysis about some special responses was also
performed.
Thirdly, loss of participants appeared in the latter problems, especially in Question

7, 8, 9, and 10, leading to biased results. This factor might be caused by lack of
focus from participants, and it suggests that the design of the questionnaire should
be more careful. The number of questions in the questionnaire may need to be
reduced. The difficulty of snippets may also need to be modified. Considering the
confounding factor mentioned at the beginning, it is hard and significant to choose
proper snippets.
There was a possible confounding factor in the order of the questions. The answer

for the first two questions were both ”error when compiling”, which might influence
the results of novices. The reason for this is that it might not occur to students that
the first two snippets were incorrect. They were likely to try their best in writing
outputs rather than pointing out the mistakes in the snippets. Therefore, the order

93

6 Discussion

of the questions should be changed for further studies.
The questionnaire was designed to be filled by novices before they started to

learn Java, so that their answers could reflect the intuitive understanding of the
questions based on their previous programming knowledge completely. If more pilot
studies are done before the actual questionnaire to test the snippets, and a post
questionnaire or interview is carried out after the questionnaire, the results will be
improved.

6.2.3 External Validity

Threats to external validity are about the generalizability of the study findings to
other populations, settings, or conditions. In this thesis, the participants were all
university students in the course Data Structures in summer semester 2023. The
PLs they had learned were C, Python, and Java. Besides, the questionnaire was
designed for novices with programming background in C and Python. Hence, there
will be problems if the participants of the questionnaire have different programming
backgrounds. The target group of the questionnaire should only be novices because
the snippets were not complex. However, the questionnaire can still be used in stud-
ies where participants are novices but not university students. The questionnaire
was filled by the participants before they started to learn the new PL (Java). The
purpose of it was to find the intuitive knowledge transfer in participants. If partici-
pants have already learned something in the new PL, the experiment design needs
to be changed to observe their knowledge transfer.

6.3 Comparison to Related Work

There are studies done to discover the mistakes made by novices. Brown and Al-
tadmri categorized the mistakes into three categories: misunderstanding syntax,
type errors, and other semantic errors [3, 4]. They analyzed the Blackbox data set
of over 100,000 students. These mistakes were also found in the results of this the-
sis, which show that syntax and semantics related knowledge are big obstacles for
novices. This assumption can be verified in the work of McCall and Kölling [25].
The studies about mistakes students made during learning Java [3, 4, 16, 33]

suggested that students still would meet a lot of problems. Hence, it is important
to carry out research on this topic, and this thesis was an attempt to contribute to
this topic.
Many studies looked into the performance of students during exams [23, 50, 22].

However, the performance of students during exams might not be the same as it of
students in conditions where they feel no pressure. This thesis tried to observe the
performance novices have in normal learning situation.
The work of Izu and Mirolo [15] explored the learning transfer of novice program-

mers when they solving two related coding tasks in C. Four types of transfer were
identified that covered positive transfer and negative transfer mentioned in this the-

94

6 Discussion

sis. Also two types of non-transfer were identified by Izu and Mirolo [15] which
included the no transfer mentioned in this thesis. In this thesis, knowledge trans-
fer between different PLs was observed, and the focus was to discover how novices
intuitively transfer their knowledge.
Some studies focused on the transfer process from block-based to text-based pro-

gramming [52, 53, 30]. They proved that it is difficult for novices transfer from
one PL to another PL that are different in syntax. The findings of this thesis also
supported this assumption.
In the research of Tshukudu and Cutts [47], transfer from procedural Python

to object-oriented Java was studied. They carried out several interviews with the
participants in 10 weeks, and found that participants had little difficulty with car-
ryover concepts, while had trouble mapping changed concepts. These findings are
similar to the assumptions in this thesis that novices are more likely to experience
positive transfer when comprehending TCC-type concepts, and are more likely to
experience negative transfer when understanding FCC-type concepts. In the study
of Tshukudu and Cutts [47], the participants were four novices and one experts
from five universities. The number of participants is less than it of this thesis (104
students).

95

7 Conclusion and Future Work

7.1 Conclusion

Research has shown that it is difficult to learn second and subsequent programming
languages [35]. For novice programmers who just start their journey of learning
to program, the difficulty is even greater. In this thesis, we aim to observe the
programming knowledge transfer that novices intuitively have, and discover the
problems they meet in the process of code comprehension. In order to achieve this
goal, we designed and used a Java questionnaire containing ten snippets covering
three types of concepts (TCC, FCC, and ATCC) to collect responses from 104
novices studying in TUC before they started to learn the new PL (Java).
By analyzing the results of the questionnaire, we found that the types of trans-

fer observed had no difference for novices with various programming backgrounds.
They all tended to have positive transfer when comprehending Java snippets con-
taining TCC-type concepts, have negative transfer when understanding Java snip-
pets containing FCC-type concepts, and have no transfer when comprehending Java
snippets containing ATCC-type concepts. These findings are similar as the study of
Tshukudu and Cutts [47]. We also found that for novice programmers who only had
experience in C programming, the most frequently observed transfer was negative
transfer. For novices with other programming experience, it was possible for them
to have misunderstandings in basic programming knowledge such as condition of
loops and nesting of loops. In addition, as the number of learned PLs increased,
novices were more likely to transfer their previous knowledge successfully to new
scenarios. Some special characteristics of students with C PL background were also
found in their responses.
We hope that these findings of the thesis could be used to improve pedagogy on

how to make it easier for students to go through the learning transfer phase. The
knowledge transfer is inevitable if a programmer wants to learn a new PL. Therefore,
if some pedagogy could be used to help students or programmers take advantage
of the knowledge transfer, they will learn the second and subsequent programming
languages faster and with less obstacles.
However, there are some limitations of this thesis that need to be reduced in future

research. For instance, the length of the questionnaire needs to be modified to reduce
the loss of responses, pilot studies could be carried out before the questionnaire, and
the order of the questions should be changed, and so on.
In conclusion, a deep observation of intuitive behavior of novice programmers

with different programming background was done in the thesis. The results of the

96

7 Conclusion and Future Work

thesis supported some conclusions of related research, and added new ideas about
behavior of novices during code comprehension. The number of participants was
large, so the findings of the thesis were built on a relatively general basis.

7.2 Future Work

In this thesis, a questionnaire was distributed to participants before they learn the
new PL. In their responses, not all of them wrote detailed explanation about how
they got to the answers. Hence, interviews or post-questionnaire can be done before
they learn the new PL to have more understanding of their thoughts during the code
comprehension. A think aloud protocol can also be useful in this case. Additional
instrumentation, such as EEG devices and eye trackers, can be used to discover
more about the behavior of novices when they read code snippets.
Another code comprehension questionnaire can be designed with more compli-

cated snippets to collect the responses from these novices after they learned Java
for one semester. With this data, we could find out if there are changes in learning
transfer. More analysis can be done to check the participants’ performance of the
final exam of the programming course to see if they still suffer from the transfer prob-
lems. This information could help us think about how we can improve the pedagogy
to reduce the pressure of novices caused by programming language transfer.

97

Bibliography

[1] Bonar, J., Soloway, E.: Uncovering principles of novice programming. In: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. pp. 10–13 (1983)

[2] Boysen, J.P.: Factors affecting computer program comprehension. Iowa State
University (1979)

[3] Brown, N.C., Altadmri, A.: Investigating novice programming mistakes: Edu-
cator beliefs vs. student data. In: Proceedings of the tenth annual conference
on International computing education research. pp. 43–50 (2014)

[4] Brown, N.C., Altadmri, A.: Novice java programming mistakes: Large-scale
data vs. educator beliefs. ACM Transactions on Computing Education (TOCE)
17(2), 1–21 (2017)

[5] Byrnes, J.P.: Cognitive development and learning in instructional contexts. (No
Title) (1996)

[6] Corritore, C.L., Wiedenbeck, S.: What do novices learn during program com-
prehension? International Journal of Human-Computer Interaction 3(2), 199–
222 (1991)

[7] Craig, S., Graesser, A., Sullins, J., Gholson, B.: Affect and learning: an ex-
ploratory look into the role of affect in learning with autotutor. Journal of
educational media 29(3), 241–250 (2004)

[8] Denny, P., Luxton-Reilly, A., Tempero, E., Hendrickx, J.: Understanding the
syntax barrier for novices. In: Proceedings of the 16th annual joint confer-
ence on Innovation and technology in computer science education. pp. 208–212
(2011)

[9] Dreyfus, H.L.: Hubert dreyfus and stuart dreyfus mind over machine: The
power of human intuition and expertise in the era of the computer (new york:
The free press, 1986), p. 50 table 1-1. five stages of skill acquisition

[10] Du Boulay, B.: Some difficulties of learning to program. Journal of Educational
Computing Research 2(1), 57–73 (1986)

[11] Fjeldstad, R.K.: Application program maintenance study. Report to Our Re-
spondents, Proceedings GUIDE 48 (1983)

98

BIBLIOGRAPHY

[12] Garcia-Martinez, S., Zingaro, D.: Teaching for transfer of learning in computer
science education. Journal for Computing Teachers pp. 1–6 (2011)

[13] Gunnarsson, K., Herber, O.: The most popular programming languages of
github’s trending repositories (2020)

[14] Gutiérrez, L.E., Guerrero, C.A., López-Ospina, H.A.: Ranking of problems
and solutions in the teaching and learning of object-oriented programming.
Education and Information Technologies 27(5), 7205–7239 (2022)

[15] Izu, C., Mirolo, C.: Learning transfer in novice programmers: A preliminary
study. In: Proceedings of the 26th ACM Conference on Innovation and Tech-
nology in Computer Science Education V. 1. pp. 178–184 (2021)

[16] Jackson, J., Cobb, M., Carver, C.: Identifying top java errors for novice pro-
grammers. In: Proceedings frontiers in education 35th annual conference. pp.
T4C–T4C. IEEE (2005)

[17] Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers. ACM
computing surveys (CSUR) 37(2), 83–137 (2005)

[18] Klump, R.: Understanding object-oriented programming concepts. In: 2001
Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.
01CH37262). vol. 2, pp. 1070–1074. IEEE (2001)

[19] Kölling, M.: The problem of teaching object-oriented programming, part 1:
Languages. Journal of Object-oriented programming 11(8), 8–15 (1999)

[20] Kölling, M., Brown, N.C., Altadmri, A.: Frame-based editing: Easing the tran-
sition from blocks to text-based programming. In: Proceedings of the Workshop
in Primary and Secondary Computing Education. pp. 29–38 (2015)

[21] Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of
novice programmers. Acm sigcse bulletin 37(3), 14–18 (2005)

[22] Lee, D.M.C., Rodrigo, M.M.T., Baker, R.S.d., Sugay, J.O., Coronel, A.: Ex-
ploring the relationship between novice programmer confusion and achievement.
In: Affective Computing and Intelligent Interaction: 4th International Confer-
ence, ACII 2011, Memphis, TN, USA, October 9–12, 2011, Proceedings, Part I
4. pp. 175–184. Springer (2011)

[23] Lopez, M., Whalley, J., Robbins, P., Lister, R.: Relationships between reading,
tracing and writing skills in introductory programming. In: Proceedings of the
fourth international workshop on computing education research. pp. 101–112
(2008)

99

BIBLIOGRAPHY

[24] Maalej, W., Tiarks, R., Roehm, T., Koschke, R.: On the comprehension of pro-
gram comprehension. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 23(4), 1–37 (2014)

[25] McCall, D., Kölling, M.: Meaningful categorisation of novice programmer er-
rors. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. pp.
1–8. IEEE (2014)

[26] McCall, D., Kölling, M.: A new look at novice programmer errors. ACM Trans-
actions on Computing Education (TOCE) 19(4), 1–30 (2019)

[27] Nelson, H.J., Irwin, G., Monarchi, D.E.: Journeys up the mountain: Different
paths to learning object-oriented programming. Accounting, Management and
Information Technologies 7(2), 53–85 (1997)

[28] Perkins, D.N., Salomon, G., et al.: Transfer of learning. International encyclo-
pedia of education 2, 6452–6457 (1992)

[29] Poo, D., Kiong, D., Ashok, S.: Object-oriented programming and Java.
Springer Science & Business Media (2007)

[30] Powers, K., Ecott, S., Hirshfield, L.M.: Through the looking glass: teaching
cs0 with alice. In: Proceedings of the 38th SIGCSE technical symposium on
Computer science education. pp. 213–217 (2007)

[31] Robins, A., Haden, P., Garner, S.: Problem distributions in a cs1 course.
In: Proceedings of the 8th Australasian Conference on Computing Education-
Volume 52. pp. 165–173 (2006)

[32] Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming:
A review and discussion. Computer science education 13(2), 137–172 (2003)

[33] Rodrigo, M.M.T., Andallaza, T.C.S., Castro, F.E.V.G., Armenta, M.L.V., Dy,
T.T., Jadud, M.C.: An analysis of java programming behaviors, affect, per-
ceptions, and syntax errors among low-achieving, average, and high-achieving
novice programmers. Journal of Educational Computing Research 49(3), 293–
325 (2013)

[34] Rodrigo, M.M.T., Baker, R.S., Jadud, M.C., Amarra, A.C.M., Dy, T., Espejo-
Lahoz, M.B.V., Lim, S.A.L., Pascua, S.A., Sugay, J.O., Tabanao, E.S.: Affec-
tive and behavioral predictors of novice programmer achievement. In: Proceed-
ings of the 14th annual ACM SIGCSE conference on Innovation and technology
in computer science education. pp. 156–160 (2009)

[35] Scholtz, J., Wiedenbeck, S.: Learning second and subsequent programming
languages: A problem of transfer. International Journal of Human-Computer
Interaction 2(1), 51–72 (1990)

100

BIBLIOGRAPHY

[36] Shinners-Kennedy, D., Fincher, S.A.: Identifying threshold concepts: From
dead end to a new direction. In: Proceedings of the ninth annual interna-
tional ACM conference on International computing education research. pp. 9–18
(2013)

[37] Shrestha, N.: Towards supporting knowledge transfer of programming lan-
guages. In: 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). pp. 275–276. IEEE (2018)

[38] Siegmund, J.: Program comprehension: Past, present, and future. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). vol. 5, pp. 13–20. IEEE (2016)

[39] Siegmund, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring and
modeling programming experience. Empirical Software Engineering 19, 1299–
1334 (2014)

[40] Slonneger, K., Kurtz, B.L.: Formal syntax and semantics of programming lan-
guages, vol. 340. Addison-Wesley Reading (1995)

[41] Snyder, A.: Encapsulation and inheritance in object-oriented programming lan-
guages. In: Conference proceedings on Object-oriented programming systems,
languages and applications. pp. 38–45 (1986)

[42] Soloway, E., Spohrer, J.C.: Studying the novice programmer. Psychology Press
(2013)

[43] Stefik, A., Siebert, S.: An empirical investigation into programming language
syntax. ACM Transactions on Computing Education (TOCE) 13(4), 1–40
(2013)

[44] Taipalus, T., et al.: Actionpool: A novel dynamic task scheduling method for
service robots (2010)

[45] Teague, D., Lister, R.: Manifestations of preoperational reasoning on similar
programming tasks. In: Proceedings of the Sixteenth Australasian Computing
Education Conference [Conferences in Research and Practice in Information
Technology, Volume 148]. pp. 65–74. Australian Computer Society (2014)

[46] Tshukudu, E.: Understanding conceptual transfer in students learning a new
programming language. Ph.D. thesis, University of Glasgow (2022)

[47] Tshukudu, E., Cutts, Q.: Semantic transfer in programming languages: Ex-
ploratory study of relative novices. In: Proceedings of the 2020 ACM Confer-
ence on Innovation and Technology in Computer Science Education. pp. 307–
313 (2020)

101

BIBLIOGRAPHY

[48] Tshukudu, E., Cutts, Q.: Understanding conceptual transfer for students learn-
ing new programming languages. In: Proceedings of the 2020 ACM conference
on international computing education research. pp. 227–237 (2020)

[49] Tutty, J., Sheard, J., Avram, C.: Teaching in the current higher education
environment: perceptions of it academics. Computer Science Education 18(3),
171–185 (2008)

[50] Venables, A., Tan, G., Lister, R.: A closer look at tracing, explaining and
code writing skills in the novice programmer. In: Proceedings of the fifth in-
ternational workshop on Computing education research workshop. pp. 117–128
(2009)

[51] Wegner, P.: Concepts and paradigms of object-oriented programming. ACM
Sigplan Oops Messenger 1(1), 7–87 (1990)

[52] Weintrop, D., Bain, C., Wilensky, U., Education, U.: Blocking progress? tran-
sitioning from block-based to text-based programming. Proc. Amer. Educ. Res.
Assoc. pp. 1–8 (2017)

[53] Weintrop, D., Wilensky, U.: Using commutative assessments to compare con-
ceptual understanding in blocks-based and text-based programs. In: Proceed-
ings of the eleventh annual international conference on international computing
education research. pp. 101–110 (2015)

[54] Winskel, G.: The formal semantics of programming languages: an introduction.
MIT press (1993)

[55] Winslow, L.E.: Programming pedagogy—a psychological overview. ACM Sigcse
Bulletin 28(3), 17–22 (1996)

[56] Wu, C.T.: An Introduction to object-oriented programming with Java TM.
Mcgraw-Hill Incorporated (2006)

[57] Wu, Q., Anderson, J.R.: Problem-solving transfer among programming lan-
guages. Tech. Rep. (1990)

102

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Research Goal
	1.3 Structure

	2 Theoretical Background
	2.1 Novice Programmers
	2.2 Syntax and Semantics
	2.2.1 Syntax in Programming Languages
	2.2.2 Semantics in Programming Languages
	2.2.3 Relationship of Syntax and Semantics

	2.3 Object-Oriented Programming and Procedural Programming
	2.3.1 Objected-Oriented Programming
	2.3.2 Difficulty in Teaching OOP
	2.3.3 Procedural Programming

	2.4 Program Comprehension
	2.5 Learning Transfer
	2.6 Transfer in Programming Languages
	2.6.1 What Is Programming Language Transfer
	2.6.2 Difficulty for Novices

	2.7 The Model of Programming Language Transfer
	2.7.1 MPLT Presented in A Figure
	2.7.2 Three Categories of Concept

	3 Related Work
	3.1 Programming Learning of Novice Programmers
	3.1.1 Programming Environments and Languages
	3.1.2 Mistakes Made by Novices
	3.1.3 Overall Performance of Novices
	3.1.4 Confusion of Novices and Other Studies

	3.2 Learning Transfer Study
	3.2.1 Transfer of Learning in CS
	3.2.2 Programming Language Transfer of Experienced Programmers
	3.2.3 Programming Language Transfer of Novices

	4 Methodology
	4.1 Research Objects
	4.1.1 Variables
	4.1.2 Research Questions
	4.1.3 Hypotheses

	4.2 Participants
	4.3 Materials and Tasks
	4.3.1 Experience Questionnaire
	4.3.2 Java Questionnaire

	4.4 Experimental Design

	5 Results
	5.1 Data Preprocessing
	5.2 Descriptive Analysis
	5.2.1 Description of the Subjects
	5.2.2 Java Questionnaire Results

	5.3 Categorization of Results
	5.3.1 Categories of Question 1 - Variable Type
	5.3.2 Categories of Question 2 - Variable Scope
	5.3.3 Categories of Question 3 - While Loop
	5.3.4 Categories of Question 4 - String Comparison
	5.3.5 Categories of Question 5 - Method Calling
	5.3.6 Categories of Question 6 - Object Reference Assignment
	5.3.7 Categories of Question 7 - Memory Allocation
	5.3.8 Categories of Question 8 - String Concatenation
	5.3.9 Categories of Question 9 - Array Length
	5.3.10 Categories of Question 10 - OOP Related

	5.4 Individual Analysis
	5.4.1 Special Case of Three Students
	5.4.2 Confusion During Interpretation

	6 Discussion
	6.1 Assessment of Results
	6.1.1 Transfer Process
	6.1.2 Answers to the Research Questions
	6.1.3 Other Findings

	6.2 Threat to Validity
	6.2.1 Construct Validity
	6.2.2 Internal Validity
	6.2.3 External Validity

	6.3 Comparison to Related Work

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

